About: Ramsey interferometry     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/i1w5CKLBN

Ramsey interferometry, also known as Ramsey–Bordé interferometry or the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the S.I. definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A modern interferometer using a Ramsey configuration was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bo

AttributesValues
rdf:type
rdfs:label
  • Ramsey interferometry (en)
rdfs:comment
  • Ramsey interferometry, also known as Ramsey–Bordé interferometry or the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the S.I. definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A modern interferometer using a Ramsey configuration was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bo (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Mplwp_ramsey_fringes_monochromatic.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
align
  • right (en)
alt
  • Atoms have a distribution of velocities (en)
  • Atoms have one velocity (en)
  • Hard pulse. (en)
  • No hard pulse. (en)
caption
  • (en)
caption align
  • center (en)
footer
  • Figure 2: The case of the atoms having all the same velocity and a distribution of velocities, specifically that of a thermal beam here. The dotted line in represents the first case of there being one velocity. These are both results of the Rabi Method. (en)
  • Figure 4: For atoms having a distribution of velocities, a hard pulse is applied and a hard pulse is not applied. (en)
width
has abstract
  • Ramsey interferometry, also known as Ramsey–Bordé interferometry or the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the S.I. definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A modern interferometer using a Ramsey configuration was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 69 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software