About: Rep-tile     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Album, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6TuYH5LGJj

In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine.

AttributesValues
rdf:type
rdfs:label
  • Repitesela (es)
  • Reptuile (fr)
  • Rep-tile (en)
  • Делящаяся плитка (ru)
rdfs:comment
  • En geometría de teselaciones, una repitesela (rep-tile en inglés) es una forma que puede ser diseccionada en copias más pequeñas de sí misma. El término en inglés se acuñó como un juego de palabras a partir de repetition tiles (repeticion de teselas), del que se derivó rep-tiles, coincidente con el nombre de un conocido grupo de animales. En español se ha ideado un juego de palabras más sencillo, enlazando las palabras repite y tesela. El autor del término original en inglés fue el matemático estadounidense Solomon W. Golomb, quien lo utilizó para describir las teselas autoreplicantes.​ introdujo en 2012 una generalización del concepto con el nombre de en la revista Mathematics Magazine.​ (es)
  • In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of Scientific American. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in Mathematics Magazine. (en)
  • Un reptuile (ou rep-tuile), ou autopavé, est une forme géométrique plane polygonale, qui possède la particularité d'être reproductible, à une échelle supérieure ou inférieure, par juxtaposition ou découpe d'un certain nombre de copies de lui-même ; ceci, donc, indéfiniment. La notion de reptuile peut être également étendue aux formes fractales. Ce nom a été créé par Solomon W. Golomb en 1962, tuile se disant "tile" en anglais, cela formait de mot "reptile". (fr)
  • Делящаяся плитка (англ. rep-tile) — понятие геометрии мозаик, фигура, которую можно на меньшие копии самой фигуры. В 2012 обобщение делящихся мозаик с названием self-tiling tile set (набор плиток с самозамощением) было предложено английским математиком в журнале Mathematics Magazine . (ru)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Geometrical_dissection_of_an_L-triomino_(rep-4).gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Horned_triangle_or_teragonic_triangle.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Self-replication_of_sphynx_hexidiamonds.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Pinwheel_2.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/L_substitution_tiling.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/A_fractal_based_on_an_L-triomino_(rep-4)-2.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/A_fractal_based_on_an_L-triomino_(rep-4)-3.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/A_fractal_based_on_an_L-triomino_(rep-4).gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/A_selection_of_rep-tiles.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Dragon_tiling_dragon.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Equilateral_triangle_fish_rep-tile.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Equilateral_triangle_reptiles.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Equilateral_triangle_rocket.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Frattale_infinito_rep-tile.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Hexadrafter2.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Hexadrafter2_as_triangles.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/L-tetrominoes_rep9.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Nonominoes.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Regular_hexagon_tiled_with_infinite_copies_of_itself.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Rep-tiles_based_on_right_triangles.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Rep-tiles_constructed_from_rectifiable_octominoes.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Right_triangle_fish_rep-tile.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Scherer_double-pyramid.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Sierpinski_carpet_tiling.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Sierpinski_triangle_tiling.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Sphinx_rep9_various.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Tetradrafter.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Tetradrafter_as_triangles.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Tridrafter.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/Tridrafter_as_triangles.gif
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software