About: Ring extension     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7cYxPkBLUe

In commutative algebra, a ring extension is a ring homomorphism of commutative rings, which makes S an R-algebra. In this article, a ring extension of a ring R by an abelian group I is a pair of a ring E and a surjective ring homomorphism such that I is isomorphic (as an abelian group) to the kernel of In other words, is a short exact sequence of abelian groups. (This makes I a two-sided ideal of E.) Given a commutative ring A, an A-extension is defined in the same way by replacing "ring" with "algebra over A" and "abelian groups" with "A-modules".

AttributesValues
rdf:type
rdfs:label
  • Ringa vastigaĵo (eo)
  • Estensione di anelli (it)
  • Ringuitbreiding (nl)
  • Ring extension (en)
rdfs:comment
  • En matematiko, pli aparte en ringo-teorio, ringa pluigaĵo de ringo S (aŭ ringa vastigaĵo aŭ vastigaĵa ringo de S) estas ĉia ringo R, en kiu S estas . Oni uzas notacion R/S kaj diras, ke la ringo R estas pluigo aŭ plivastigo de ka ringo S Se estas donita ringa vastigo R/S kaj du primaj idealoj P en R kaj p en S, oni diras, ke P kuŝas super p, se P ∩ S = p. (eo)
  • In de ringtheorie, een deelgebied van de wiskunde, is een ringuitbreiding of uitbreidingsring van een ring , een ring waarvan een deelring is. Men noteert dit als , uitgesproken als: is een ringuitbreiding van . Gegeven een uitbreiding van commutatieve ringen en een priemideaal van , volgt dat de doorsnede, zeg , van met een priemideaal van is. In dat geval zegt men dat over ligt. De situatie is gecompliceerder als niet-commutatief is. (nl)
  • In commutative algebra, a ring extension is a ring homomorphism of commutative rings, which makes S an R-algebra. In this article, a ring extension of a ring R by an abelian group I is a pair of a ring E and a surjective ring homomorphism such that I is isomorphic (as an abelian group) to the kernel of In other words, is a short exact sequence of abelian groups. (This makes I a two-sided ideal of E.) Given a commutative ring A, an A-extension is defined in the same way by replacing "ring" with "algebra over A" and "abelian groups" with "A-modules". (en)
  • In teoria degli anelli, una branca della matematica, un'estensione di anelli è una coppia di anelli (R, S) in cui uno è contenuto nell'altro, cioè . Tale situazione si indicherà con R/S e si dirà che R è un'estensione di anelli di S.. A partire da un'estensione di anelli R/S e da un sottoinsieme B di R, è possibile costruire il più piccolo sottoanello di R contenente sia S che B: tale anello si indica con S[B] e si può dimostrare che coincide con l'insieme delle possibili combinazioni di elementi di mediante le operazioni di anello (somma e prodotto) di R. (it)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En matematiko, pli aparte en ringo-teorio, ringa pluigaĵo de ringo S (aŭ ringa vastigaĵo aŭ vastigaĵa ringo de S) estas ĉia ringo R, en kiu S estas . Oni uzas notacion R/S kaj diras, ke la ringo R estas pluigo aŭ plivastigo de ka ringo S Se estas donita ringa vastigo R/S kaj du primaj idealoj P en R kaj p en S, oni diras, ke P kuŝas super p, se P ∩ S = p. (eo)
  • In commutative algebra, a ring extension is a ring homomorphism of commutative rings, which makes S an R-algebra. In this article, a ring extension of a ring R by an abelian group I is a pair of a ring E and a surjective ring homomorphism such that I is isomorphic (as an abelian group) to the kernel of In other words, is a short exact sequence of abelian groups. (This makes I a two-sided ideal of E.) Given a commutative ring A, an A-extension is defined in the same way by replacing "ring" with "algebra over A" and "abelian groups" with "A-modules". An extension is said to be trivial if splits; i.e., admits a section that is an algebra homomorphism. This implies that E is isomorphic to the direct product of R and I. A morphism between extensions of R by I, over say A, is an algebra homomorphism E → E' that induces the identities on I and R. By the five lemma, such a morphism is necessarily an isomorphism, and so two extensions are equivalent if there is a morphism between them. (en)
  • In teoria degli anelli, una branca della matematica, un'estensione di anelli è una coppia di anelli (R, S) in cui uno è contenuto nell'altro, cioè . Tale situazione si indicherà con R/S e si dirà che R è un'estensione di anelli di S.. A partire da un'estensione di anelli R/S e da un sottoinsieme B di R, è possibile costruire il più piccolo sottoanello di R contenente sia S che B: tale anello si indica con S[B] e si può dimostrare che coincide con l'insieme delle possibili combinazioni di elementi di mediante le operazioni di anello (somma e prodotto) di R. Se esiste un insieme finito tale che l'estensione R/S si dice finitamente generata. Particolari tipi di estensioni di anelli sono le estensioni di campi. Si può provare che se R/K è un'estensione di anelli in cui K è un campo ed R=K[A] per qualche insieme A di elementi algebrici su K, allora anche R è un campo, precisamente il campo K(A) che si ottiene aggiungendo gli elementi di A a K, e dunque R/K è un'estensione di campi. (it)
  • In de ringtheorie, een deelgebied van de wiskunde, is een ringuitbreiding of uitbreidingsring van een ring , een ring waarvan een deelring is. Men noteert dit als , uitgesproken als: is een ringuitbreiding van . Gegeven een uitbreiding van commutatieve ringen en een priemideaal van , volgt dat de doorsnede, zeg , van met een priemideaal van is. In dat geval zegt men dat over ligt. De situatie is gecompliceerder als niet-commutatief is. (nl)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 64 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software