About: Shannon's source coding theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPresentationLayerProtocols, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/66Vk8emrjQ

In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the limits to possible data compression, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that (in the limit, as the length of a stream of independent and identically-distributed random variable (i.i.d.) data tends to infinity) it is impossible to compress the data such that the code rate (average number of bits per symbol) is less than the Shannon entropy of the source, without it being virtually certain that information will be lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible probability of loss.

AttributesValues
rdf:type
rdfs:label
  • Shannon's source coding theorem (en)
  • Primer teorema de Shannon (ca)
  • Primer teorema de Shannon (es)
  • Théorème du codage de source (fr)
  • Primo teorema di Shannon (it)
  • シャノンの情報源符号化定理 (ja)
  • Podstawowe twierdzenie Shannona (pl)
  • Teorema de codificação da fonte (pt)
  • Теорема Шеннона об источнике шифрования (ru)
  • 信源编码定理 (zh)
rdfs:comment
  • El teorema de codificació de fonts, primer teorema de Shannon, o menys utilitzada, teorema de la codificació sense soroll) és un teorema enunciat per Claude Shannon el 1948, que estableix el límit teòric per a la compressió d'una font de dades (origen). El raonament de Shannon es basa en vectors i una font fixa (després de ). El teorema demostra que quan , la longitud mitjana del codi va a l'entropia. Per als codis amb els símbols, el teorema simplifica a . (ca)
  • 情報理論において、シャノンの情報源符号化定理(シャノンのじょうほうげんふごうかていり、英語: Shannon's source coding theorem, noiseless coding theorem)は、データ圧縮の可能な限界と情報量(シャノンエントロピー)の操作上の意味を確立する定理である。1948年のクロード・シャノンの論文『通信の数学的理論』で発表された。シャノンの第二基本定理(通信路符号化定理)に対してシャノンの第一基本定理とも言う。 情報源符号化定理によれば、(独立同分布(iid)の確率変数のデータの列の長さが無限大に近づくにつれて)、符号化率(記号1つ当たりの平均符号長)が情報源のシャノンエントロピーよりも小さいデータを、情報が失われることが事実上確実ではないように圧縮することは不可能である。しかし、損失の可能性が無視できる場合、符号化率を任意にシャノンエントロピーに近づけることは可能である。 シンボルコードの情報源符号化定理は、入力語(確率変数と見なされる)のエントロピーとターゲットアルファベットの大きさの関数として、符号語の可能な期待される長さに上限と下限を設定する。 (ja)
  • 在信息论中,香农的信源编码定理(或无噪声编码定理)确立了数据压缩的限度,以及香农熵的操作意义。 信源编码定理表明(在极限情况下,随着独立同分布随机变量数据流的长度趋于无穷)不可能把数据压缩得码率(每个符号的比特的平均数)比信源的香农熵还小,又不丢失信息。但是有可能使码率任意接近香农熵,且损失的概率极小。 码符号的信源编码定理把码字的最小可能期望长度看作输入字(看作随机变量)的熵和目标编码表的大小的一个函数,给出了此函数的上界和下界。 (zh)
  • En teoría de la información, el teorema de codificación de fuentes, primer teorema de Shannon o, menos utilizado, teorema de codificación sin ruido es un teorema enunciado por Claude Shannon en 1948 que establece el límite teórico para la compresión de una fuente de datos,​ así como el significado operacional de la entropía de Shannon. El primer teorema de Shannon establece una cota inferior y superior de la longitud mínima posible de bits de información como función de la entropía. (es)
  • Le théorème du codage de source (ou premier théorème de Shannon, ou encore théorème de codage sans bruit) est un théorème en théorie de l'information, énoncé par Claude Shannon en 1948, qui énonce la limite théorique pour la compression d'une source. (fr)
  • In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the limits to possible data compression, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that (in the limit, as the length of a stream of independent and identically-distributed random variable (i.i.d.) data tends to infinity) it is impossible to compress the data such that the code rate (average number of bits per symbol) is less than the Shannon entropy of the source, without it being virtually certain that information will be lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible probability of loss. (en)
  • Nella teoria dell'informazione, il primo teorema di Shannon (o teorema della codifica di sorgente), stabilisce dei limiti alla massima compressione possibile di un insieme di dati e definisce il significato operativo dell'entropia. Il teorema della codifica di sorgente per simboli di codice, stabilisce un limite inferiore e superiore alla minima lunghezza attesa di una serie di parole di codice, in funzione dell'entropia della parola in ingresso (vista come una variabile aleatoria) e della dimensione dell'alfabeto in esame. (it)
  • Podstawowe twierdzenie Shannona dla kanałów bezszumowych (ang. the fundamental theorem for a noiseless channel) – twierdzenie sformułowane przez Claude’a E. Shannona w 1948 roku, a dotyczy ograniczenia na minimalną średnią długość słów kodowych w kodowaniu utworzonym do zapisu symboli generowanych przez pewne dyskretne źródło danych o określonej entropii (średniej liczbie bitów na symbol). Przez dyskretne źródło danych rozumie się tutaj źródło danych opisywane przez dyskretną zmienną losową, tzn. na wyjściu z określonym prawdopodobieństwem pojawiają się symbole z pewnego skończonego alfabetu. (pl)
  • Codificar uma fonte de informação envolve representá-la, para fins de transmissão e armazenamento, de tal forma a usar a menor quantidade de símbolos médios possível, pois a eficiência do codificador está ligada à quantidade de dígitos que foram utilizados para essa nova representação. Temos então que, quanto menor for a quantidade de dígitos empregado, mais eficiente será esse codificador. Pode-se dizer então que o processo de codificação de fonte eficiente tem como objetivo retirar redundâncias que estão presentes naquela fonte. Nesse, sentido Shannon provou que a informação emitida por uma fonte discreta sem memória pode ser comprimida a uma taxa de codificação , onde é a entropia associada à fonte. Essa idéia é parte do conceito do conhecido Teorema de codificação da fonte, a ser disc (pt)
  • В теории информации теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона. Теорема показывает, что (когда в потоке независимо и одинаково распределённых (НОР) случайных переменных количество данных стремится к бесконечности) невозможно сжать данные настолько, что оценка кода (среднее число бит на символ) меньше, чем энтропия Шеннона исходных данных, без потери точности информации. Тем не менее, можно получить код, близкий к энтропии Шеннона без значительных потерь. (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • El teorema de codificació de fonts, primer teorema de Shannon, o menys utilitzada, teorema de la codificació sense soroll) és un teorema enunciat per Claude Shannon el 1948, que estableix el límit teòric per a la compressió d'una font de dades (origen). El raonament de Shannon es basa en vectors i una font fixa (després de ). El teorema demostra que quan , la longitud mitjana del codi va a l'entropia. Per als codis amb els símbols, el teorema simplifica a . (ca)
  • En teoría de la información, el teorema de codificación de fuentes, primer teorema de Shannon o, menos utilizado, teorema de codificación sin ruido es un teorema enunciado por Claude Shannon en 1948 que establece el límite teórico para la compresión de una fuente de datos,​ así como el significado operacional de la entropía de Shannon. El primer teorema de Shannon demuestra que, en el límite de una cadena de variables aleatorias independientes e idénticamente distribuidas de datos que tiende a infinito, es imposible comprimir la información de forma que la relación de codificación (número medio de bits por símbolo) sea menor que la entropía de Shannon de la fuente, si se garantiza que no haya pérdida de información. Sin embargo, sí es posible conseguir una relación de codificación arbitrariamente cerca del valor de la entropía de Shannon. El primer teorema de Shannon establece una cota inferior y superior de la longitud mínima posible de bits de información como función de la entropía. (es)
  • Le théorème du codage de source (ou premier théorème de Shannon, ou encore théorème de codage sans bruit) est un théorème en théorie de l'information, énoncé par Claude Shannon en 1948, qui énonce la limite théorique pour la compression d'une source. Le théorème montre que l'on ne peut pas compresser une chaine de variables aléatoires i.i.d, quand la longueur de celle-ci tend vers l'infini, de telle sorte à ce que la longueur moyenne des codes des variables soit inférieure à l'entropie de la variable source. Cependant, on peut avoir une compression avec une longueur moyenne de code arbitrairement proche de l'entropie lorsque la longueur de la chaîne tend vers l'infini. (fr)
  • In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the limits to possible data compression, and the operational meaning of the Shannon entropy. Named after Claude Shannon, the source coding theorem shows that (in the limit, as the length of a stream of independent and identically-distributed random variable (i.i.d.) data tends to infinity) it is impossible to compress the data such that the code rate (average number of bits per symbol) is less than the Shannon entropy of the source, without it being virtually certain that information will be lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible probability of loss. The source coding theorem for symbol codes places an upper and a lower bound on the minimal possible expected length of codewords as a function of the entropy of the input word (which is viewed as a random variable) and of the size of the target alphabet. (en)
  • 情報理論において、シャノンの情報源符号化定理(シャノンのじょうほうげんふごうかていり、英語: Shannon's source coding theorem, noiseless coding theorem)は、データ圧縮の可能な限界と情報量(シャノンエントロピー)の操作上の意味を確立する定理である。1948年のクロード・シャノンの論文『通信の数学的理論』で発表された。シャノンの第二基本定理(通信路符号化定理)に対してシャノンの第一基本定理とも言う。 情報源符号化定理によれば、(独立同分布(iid)の確率変数のデータの列の長さが無限大に近づくにつれて)、符号化率(記号1つ当たりの平均符号長)が情報源のシャノンエントロピーよりも小さいデータを、情報が失われることが事実上確実ではないように圧縮することは不可能である。しかし、損失の可能性が無視できる場合、符号化率を任意にシャノンエントロピーに近づけることは可能である。 シンボルコードの情報源符号化定理は、入力語(確率変数と見なされる)のエントロピーとターゲットアルファベットの大きさの関数として、符号語の可能な期待される長さに上限と下限を設定する。 (ja)
  • Nella teoria dell'informazione, il primo teorema di Shannon (o teorema della codifica di sorgente), stabilisce dei limiti alla massima compressione possibile di un insieme di dati e definisce il significato operativo dell'entropia. Il teorema stabilisce che, per una serie di variabili aleatorie indipendenti ed identicamente distribuite (i.i.d.) di lunghezza che tende ad infinito, non è possibile comprimere i dati in un messaggio più corto dell'entropia totale senza perdita di informazione. Al contrario, compressioni arbitrariamente vicine al valore di entropia sono possibili, con probabilità di perdita di informazione piccola a piacere. Il teorema della codifica di sorgente per simboli di codice, stabilisce un limite inferiore e superiore alla minima lunghezza attesa di una serie di parole di codice, in funzione dell'entropia della parola in ingresso (vista come una variabile aleatoria) e della dimensione dell'alfabeto in esame. (it)
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 68 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software