Like the Earth, the crustal properties and structure of the surface of Mars are thought to have evolved through time; in other words, as on Earth, tectonic processes have shaped the planet. However, both the ways this change has happened and the properties of the planet's lithosphere are very different when compared to the Earth. Today, Mars is believed to be largely tectonically inactive. However, observational evidence and its interpretation suggests that this was not the case further back in Mars' geological history.
Attributes | Values |
---|
rdfs:label
| - Tectónica de Marte (es)
- Tectonics of Mars (en)
|
rdfs:comment
| - En la historia tectónica de Marte, se consideran dos eventos tectónicos primarios. El primero es el proceso que bajó y resurgió en el hemisferio norte, resultando en un planeta cuyo grosor cortical es claramente bimodal, lo que se denomina dicotomía hemisférica marciana (Fig. 1). El segundo evento tectónico es el proceso que formó la subida de Tharsis, que es una provincia volcánica masiva que ha tenido grandes influencias tectónicas tanto a escala regional como global. Estos acontecimientos pertenecen en gran parte a las tres principales provincias fisiográficas de Marte: las planicies del norte, las tierras altas del sur y la meseta de Tharsis. Las diferentes características geológicas y tectónicas de estas regiones se describirán en la siguiente sección. Las hipótesis propuestas para ex (es)
- Like the Earth, the crustal properties and structure of the surface of Mars are thought to have evolved through time; in other words, as on Earth, tectonic processes have shaped the planet. However, both the ways this change has happened and the properties of the planet's lithosphere are very different when compared to the Earth. Today, Mars is believed to be largely tectonically inactive. However, observational evidence and its interpretation suggests that this was not the case further back in Mars' geological history. (en)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - En la historia tectónica de Marte, se consideran dos eventos tectónicos primarios. El primero es el proceso que bajó y resurgió en el hemisferio norte, resultando en un planeta cuyo grosor cortical es claramente bimodal, lo que se denomina dicotomía hemisférica marciana (Fig. 1). El segundo evento tectónico es el proceso que formó la subida de Tharsis, que es una provincia volcánica masiva que ha tenido grandes influencias tectónicas tanto a escala regional como global. Estos acontecimientos pertenecen en gran parte a las tres principales provincias fisiográficas de Marte: las planicies del norte, las tierras altas del sur y la meseta de Tharsis. Las diferentes características geológicas y tectónicas de estas regiones se describirán en la siguiente sección. Las hipótesis propuestas para explicar cómo los dos eventos tectónicos primarios pueden haber ocurrido se dividen generalmente en procesos endogénicos y exogénicos. Se sugiere que existan implicaciones tectónicas de las anomalías magnéticas presentes en Marte. Estas anomalías magnéticas son de forma lineal y de polaridad alterna, muy parecidas a las encontradas en la Tierra que han sido un producto de la propagación del fondo marino. Un proceso similar a la propagación del fondo marino también se ha propuesto para explicar las anomalías magnéticas en Marte. Además, investigaciones recientes afirman haber encontrado la primera evidencia fuerte de la tectónica de placas en Marte. Este descubrimiento se refiere a una zona de falla de ataque a gran escala en el Valles Marineris a través del sistema, que se ha comparado con la transformación de fallas en la Tierra como las fallas de San Andreas y el Mar Muerto. Este descubrimiento podría tener importantes implicaciones para nuestra comprensión futura de la tectónica marciana. (es)
- Like the Earth, the crustal properties and structure of the surface of Mars are thought to have evolved through time; in other words, as on Earth, tectonic processes have shaped the planet. However, both the ways this change has happened and the properties of the planet's lithosphere are very different when compared to the Earth. Today, Mars is believed to be largely tectonically inactive. However, observational evidence and its interpretation suggests that this was not the case further back in Mars' geological history. At the scale of the whole planet, two large scale physiographic features are apparent on the surface. The first is that the northern hemisphere of the planet is much lower than the southern, and has been more recently resurfaced – also implying that the crustal thickness beneath the surface is distinctly bimodal. This feature is referred to as the "hemispheric dichotomy". The second is the Tharsis rise, a massive volcanic province that has had major tectonic influences both on a regional and global scale in Mars' past. On this basis, the surface of Mars is often divided into three major physiographic provinces, each with different geological and tectonic characteristics: the northern plains, the southern highlands, and the Tharsis plateau. Much tectonic study of Mars seeks to explain the processes that led to the planet's division into these three provinces, and how their differing characteristics arose. Hypotheses proposed to explain how the two primary tectonic events may have occurred are usually divided into endogenic (arising from the planet itself) and exogenic (foreign to the planet, e.g., meteorite impact) processes. This distinction occurs throughout the study of tectonics on Mars. In general, Mars lacks unambiguous evidence that terrestrial-style plate tectonics has shaped its surface. However, in some places magnetic anomalies in the Martian crust that are linear in shape and of alternating polarity have been detected by orbiting satellites. Some authors have argued that these share an origin with similar stripes found on Earth's seafloor, which have been attributed to gradual production of new crust at spreading mid-ocean ridges. Other authors have argued that large-scale strike-slip fault zones can be identified on the surface of Mars (e.g., in the Valles Marineris trough), which can be likened to plate-bounding transform faults on Earth such as the San Andreas and Dead Sea faults. These observations provide some indication that at least some parts of Mars may have undergone plate tectonics deep in its geological past. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is rdfs:seeAlso
of | |
is Link from a Wikipage to another Wikipage
of | |