In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles. That vertex is called the right angle of the trirectangular tetrahedron and the face opposite it is called the base. The three edges that meet at the right angle are called the legs and the perpendicular from the right angle to the base is called the altitude of the tetrahedron. Only the bifurcating graph of the Affine Coxeter group has a Trirectangular tetrahedron fundamental domain.
Attributes | Values |
---|
rdfs:label
| - Tétraèdre trirectangle (fr)
- Trirectangular tetrahedron (en)
- Прямокутний тетраедр (uk)
|
rdfs:comment
| - En géométrie, un tétraèdre trirectangle est un tétraèdre dont trois faces sont des triangles rectangles dont les angles droit aboutissent au même sommet. Ce sommet H est l'orthocentre du tétraèdre, lequel est donc orthocentrique. La face opposée à ce sommet s'appelle la base. La perpendiculaire à la base issue de H est appelée la hauteur du tétraèdre (les autres hauteurs étant les arêtes issues de H). (fr)
- In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles. That vertex is called the right angle of the trirectangular tetrahedron and the face opposite it is called the base. The three edges that meet at the right angle are called the legs and the perpendicular from the right angle to the base is called the altitude of the tetrahedron. Only the bifurcating graph of the Affine Coxeter group has a Trirectangular tetrahedron fundamental domain. (en)
- Прямокутний тетраедр — це чотиригранник у якого всі ребра, прилеглі до однієї з вершин, перпендикулярні між собою. У прямокутному тетраедрі завжди три прилеглі грані будуть прямокутними трикутниками, а остання грань буде довільним трикутником і називається базою. (uk)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
title
| - Trirectangular tetrahedron (en)
|
urlname
| - TrirectangularTetrahedron (en)
|
has abstract
| - En géométrie, un tétraèdre trirectangle est un tétraèdre dont trois faces sont des triangles rectangles dont les angles droit aboutissent au même sommet. Ce sommet H est l'orthocentre du tétraèdre, lequel est donc orthocentrique. La face opposée à ce sommet s'appelle la base. La perpendiculaire à la base issue de H est appelée la hauteur du tétraèdre (les autres hauteurs étant les arêtes issues de H). (fr)
- In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles. That vertex is called the right angle of the trirectangular tetrahedron and the face opposite it is called the base. The three edges that meet at the right angle are called the legs and the perpendicular from the right angle to the base is called the altitude of the tetrahedron. Only the bifurcating graph of the Affine Coxeter group has a Trirectangular tetrahedron fundamental domain. (en)
- Прямокутний тетраедр — це чотиригранник у якого всі ребра, прилеглі до однієї з вершин, перпендикулярні між собою. У прямокутному тетраедрі завжди три прилеглі грані будуть прямокутними трикутниками, а остання грань буде довільним трикутником і називається базою. (uk)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |