About: Witt's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatQuadraticForms, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/783W39WGew

In mathematics, Witt's theorem, named after Ernst Witt, is a basic result in the algebraic theory of quadratic forms: any isometry between two subspaces of a nonsingular quadratic space over a field k may be extended to an isometry of the whole space. An analogous statement holds also for skew-symmetric, Hermitian and skew-Hermitian bilinear forms over arbitrary fields. The theorem applies to classification of quadratic forms over k and in particular allows one to define the Witt group W(k) which describes the "stable" theory of quadratic forms over the field k.

AttributesValues
rdf:type
rdfs:label
  • Théorème de Witt (fr)
  • Witt's theorem (en)
  • Теорема Витта (ru)
rdfs:comment
  • En algèbre, le théorème de Witt est un résultat sur lequel s'appuie toute la théorie des formes quadratiques. Il permet en effet de classifier les formes quadratiques sur un corps K donné et fonde la définition du groupe de Witt de K. À proprement parler il existe plusieurs énoncés qui sont qualifiés de théorèmes de Witt : pour préciser, on les appelle théorèmes de décomposition, d'extension et d'annulation de Witt. Dans ce faisceau de résultats, obtenus par Ernst Witt en 1937, c'est le théorème d'annulation qui est le plus souvent appelé le théorème de Witt. (fr)
  • In mathematics, Witt's theorem, named after Ernst Witt, is a basic result in the algebraic theory of quadratic forms: any isometry between two subspaces of a nonsingular quadratic space over a field k may be extended to an isometry of the whole space. An analogous statement holds also for skew-symmetric, Hermitian and skew-Hermitian bilinear forms over arbitrary fields. The theorem applies to classification of quadratic forms over k and in particular allows one to define the Witt group W(k) which describes the "stable" theory of quadratic forms over the field k. (en)
  • Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство. (ru)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En algèbre, le théorème de Witt est un résultat sur lequel s'appuie toute la théorie des formes quadratiques. Il permet en effet de classifier les formes quadratiques sur un corps K donné et fonde la définition du groupe de Witt de K. À proprement parler il existe plusieurs énoncés qui sont qualifiés de théorèmes de Witt : pour préciser, on les appelle théorèmes de décomposition, d'extension et d'annulation de Witt. Dans ce faisceau de résultats, obtenus par Ernst Witt en 1937, c'est le théorème d'annulation qui est le plus souvent appelé le théorème de Witt. (fr)
  • In mathematics, Witt's theorem, named after Ernst Witt, is a basic result in the algebraic theory of quadratic forms: any isometry between two subspaces of a nonsingular quadratic space over a field k may be extended to an isometry of the whole space. An analogous statement holds also for skew-symmetric, Hermitian and skew-Hermitian bilinear forms over arbitrary fields. The theorem applies to classification of quadratic forms over k and in particular allows one to define the Witt group W(k) which describes the "stable" theory of quadratic forms over the field k. (en)
  • Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство. (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software