rdfs:comment
| - 分子中的原子理论(Atoms in molecules,简称AIM)是量子化学的一个模型。它基于标量场的拓扑性质来描述分子中的成键。除了成键性质之外,AIM 还根据拓扑性质对全空间进行划分,每个区域内正好包含一个原子核,这种区域给出了量子化学上定义原子的一种方式。通过对每一区域内进行积分,可以得到单个原子的一系列性质。AIM 方法于上世纪60年代由提出。在过去的几十年里,AIM 逐渐发展成一种用于解决化学体系中的许多问题的理论,其应用的广泛性远非之前提出的各种模型或理论所能及。在 AIM 中,原子表现电子密度梯度场中的吸引子,因而可以通过梯度场的局域曲率来进行定义。这种分析方法一般在文献中称为对电子密度的拓扑分析,尽管这个词与数学中的拓扑一词的含义并不相同。 根据 AIM 理论的基本原理,分子结构由电子密度场上的驻点给出。 (zh)
- In quantum chemistry, the quantum theory of atoms in molecules (QTAIM), sometimes referred to as atoms in molecules (AIM), is a model of molecular and condensed matter electronic systems (such as crystals) in which the principal objects of molecular structure - atoms and bonds - are natural expressions of a system's observable electron density distribution function. An electron density distribution of a molecule is a probability distribution that describes the average manner in which the electronic charge is distributed throughout real space in the attractive field exerted by the nuclei. According to QTAIM, molecular structure is revealed by the stationary points of the electron density together with the gradient paths of the electron density that originate and terminate at these points. (en)
- El planteamiento de la teoría de átomos en moléculas es un modelo químico cuántico que caracteriza el enlace químico de un sistema basándose en la topología de la densidad de carga electrónica negativa. Los datos de densidad electrónica pueden tener un origen empírico (obtenido de la difracción de rayos X de cristales del compuesto a estudiar), o teórico a partir de la función de onda del sistema. (es)
- L'approche Atoms in Molecules (AIM) ou Atoms-in-Molecules ou encore théorie quantique des atomes dans les molécules (en anglais Quantum Theory of Atoms in Molecules, QTAIM) est un modèle de chimie quantique caractérisant la liaison chimique d'un système en se basant sur une approche topologique de la densité de charge. En plus de la liaison, l'AIM permet le calcul de certaines propriétés physiques sur une base par atome, en divisant l'espace en volumes atomiques contenant chacun exactement un noyau. Développée par le professeur Richard Bader dès le début des années 1960, elle est devenue progressivement dans les dernières décennies une théorie pour proposer des réponses à certaines questions sur les systèmes chimiques, dans de nombreux cas difficilement tractables par d'autres modèles ou t (fr)
- INTRODUCAO Richard Bader et al. propuseram, no início da década de 60, um modelo fundado no reconhecimento da participação da na compreensão de observações experimentais. Este modelo é conhecido como Átomos em Moléculas (AIM, do inglês Atoms in Molecules). Recentemente o modelo AIM recebeu o nome de Teoria quântica de átomos em Moléculas (QTAIM). Vale destacar que o modelo AIM, introduziu a terceira dimensão na química teórica. (pt)
|
has abstract
| - In quantum chemistry, the quantum theory of atoms in molecules (QTAIM), sometimes referred to as atoms in molecules (AIM), is a model of molecular and condensed matter electronic systems (such as crystals) in which the principal objects of molecular structure - atoms and bonds - are natural expressions of a system's observable electron density distribution function. An electron density distribution of a molecule is a probability distribution that describes the average manner in which the electronic charge is distributed throughout real space in the attractive field exerted by the nuclei. According to QTAIM, molecular structure is revealed by the stationary points of the electron density together with the gradient paths of the electron density that originate and terminate at these points. QTAIM was primarily developed by Professor Richard Bader and his research group at McMaster University over the course of decades, beginning with analyses of theoretically calculated electron densities of simple molecules in the early 1960s and culminating with analyses of both theoretically and experimentally measured electron densities of crystals in the 90s. The development of QTAIM was driven by the assumption that, since the concepts of atoms and bonds have been and continue to be so ubiquitously useful in interpreting, classifying, predicting and communicating chemistry, they should have a well-defined physical basis. QTAIM recovers the central operational concepts of the molecular structure hypothesis, that of a functional grouping of atoms with an additive and characteristic set of properties, together with a definition of the bonds that link the atoms and impart the structure. QTAIM defines chemical bonding and structure of a chemical system based on the topology of the electron density. In addition to bonding, QTAIM allows the calculation of certain physical properties on a per-atom basis, by dividing space up into atomic volumes containing exactly one nucleus, which acts as a local attractor of the electron density. In QTAIM an atom is defined as a proper open system, i.e. a system that can share energy and electron density which is localized in the 3D space. The mathematical study of these features is usually referred to in the literature as charge density topology. QTAIM rests on the fact that the dominant topological property of the vast majority of electron density distributions is the presence of strong maxima that occur exclusively at the nuclei, certain pairs of which are linked together by ridges of electron density. In terms of an electron density distribution's gradient vector field, this corresponds to a complete, non-overlapping partitioning of a molecule into three-dimensional basins (atoms) that are linked together by shared two-dimensional separatrices (interatomic surfaces). Within each interatomic surface, the electron density is a maximum at the corresponding internuclear saddle point, which also lies at the minimum of the ridge between corresponding pair of nuclei, the ridge being defined by the pair of gradient trajectories (bond path) originating at the saddle point and terminating at the nuclei. Because QTAIM atoms are always bounded by surfaces having zero flux in the gradient vector field of the electron density, they have some unique quantum mechanical properties compared to other subsystem definitions, including unique electronic kinetic energy the satisfaction of an electronic virial theorem analogous to the molecular electronic virial theorem and some interesting variational properties. QTAIM has gradually become a method for addressing possible questions regarding chemical systems, in a variety of situations hardly handled before by any other model or theory in chemistry. (en)
- L'approche Atoms in Molecules (AIM) ou Atoms-in-Molecules ou encore théorie quantique des atomes dans les molécules (en anglais Quantum Theory of Atoms in Molecules, QTAIM) est un modèle de chimie quantique caractérisant la liaison chimique d'un système en se basant sur une approche topologique de la densité de charge. En plus de la liaison, l'AIM permet le calcul de certaines propriétés physiques sur une base par atome, en divisant l'espace en volumes atomiques contenant chacun exactement un noyau. Développée par le professeur Richard Bader dès le début des années 1960, elle est devenue progressivement dans les dernières décennies une théorie pour proposer des réponses à certaines questions sur les systèmes chimiques, dans de nombreux cas difficilement tractables par d'autres modèles ou théories en chimie. En QTAIM, un atome est défini comme un système propre ouvert, c'est-à-dire un système pouvant transporter de l'énergie et de la densité électronique, qui est localisé dans l'espace tridimensionnel. Chaque atome agit comme un attracteur local de la densité électronique, et peut ainsi être défini en termes de courbures locales de la densité électronique. L'étude mathématique de ces comportements est référée dans la littérature comme « topologie de densité de charge ». Cependant, le terme de topologie est utilisé dans un sens différent que celui des mathématiques. (fr)
- El planteamiento de la teoría de átomos en moléculas es un modelo químico cuántico que caracteriza el enlace químico de un sistema basándose en la topología de la densidad de carga electrónica negativa. Los datos de densidad electrónica pueden tener un origen empírico (obtenido de la difracción de rayos X de cristales del compuesto a estudiar), o teórico a partir de la función de onda del sistema. Además del enlace, el planteamiento de Átomos En Moléculas (AEM) permite calcular ciertas propiedades físicas sobre 'cuencas atómicas', por la división del espacio en volúmenes atómicos que contienen un único núcleo. Las principales conclusiones que permite el planteamiento de AEM son:
* Una molécula se puede dividir de forma única en un conjunto de volúmenes atómicos. Estos volúmenes están separados por una serie de superficies a través de las cuales el flujo del gradiente de la densidad electrónica es cero. Las propiedades atómicas como carga atómica, momento dipolar y energía se pueden calcular por integración de sus correspondientes operadores sobre este volumen atómico.
* Dos átomos están enlazados si sus volúmenes atómicos comparten una superficie interatómica común, y hay un punto crítico (3, −1) en esta superficie. Un punto crítico se define como un punto del espacio donde el gradiente del campo densidad de carga es cero. Un punto crítico (3, −1) se define como aquel que tiene dos autovalores de la Matriz Hessiana negativos mientras que el tercero es positivo. En otras palabras, un punto crítico de enlace es un punto de silla de primer orden del campo escalar de densidad electrónica.
* Los enlaces interatómicos se clasifican como de capa cerrada o compartidos, si la de la densidad electrónica en el punto crítico es positiva o negativa, respectivamente.
* La torsión geométrica del enlace se puede medir midiendo la desviación del punto crítico enlazante del eje interatómico entre los dos átomos. Una desviación grande implica un enlace muy torsionado. (es)
- INTRODUCAO Richard Bader et al. propuseram, no início da década de 60, um modelo fundado no reconhecimento da participação da na compreensão de observações experimentais. Este modelo é conhecido como Átomos em Moléculas (AIM, do inglês Atoms in Molecules). Recentemente o modelo AIM recebeu o nome de Teoria quântica de átomos em Moléculas (QTAIM). O Modelo AIM ajuda na compreensão de conceitos como estrutura química, reatividade e topologia da distribuição eletrônica, sendo aplicada no cálculo de calores de combustão e tensão angular de cicloalcanos, constante de acidez de ácidos orgânicos, investigação de ligação de hidrogênio e ligações H-H. O progresso do modelo AIM permite o desenvolvimento de “backgrounds” teóricos (novos métodos para analise de função de densidade eletrônica (p) de uma molécula como índice de localização e índice de deslocalização) e o desenvolvimento de métodos de cálculo que facilitam ou agilizam a obtenção de informações sobre a molécula. Vale destacar que o modelo AIM, introduziu a terceira dimensão na química teórica. (pt)
- 分子中的原子理论(Atoms in molecules,简称AIM)是量子化学的一个模型。它基于标量场的拓扑性质来描述分子中的成键。除了成键性质之外,AIM 还根据拓扑性质对全空间进行划分,每个区域内正好包含一个原子核,这种区域给出了量子化学上定义原子的一种方式。通过对每一区域内进行积分,可以得到单个原子的一系列性质。AIM 方法于上世纪60年代由提出。在过去的几十年里,AIM 逐渐发展成一种用于解决化学体系中的许多问题的理论,其应用的广泛性远非之前提出的各种模型或理论所能及。在 AIM 中,原子表现电子密度梯度场中的吸引子,因而可以通过梯度场的局域曲率来进行定义。这种分析方法一般在文献中称为对电子密度的拓扑分析,尽管这个词与数学中的拓扑一词的含义并不相同。 根据 AIM 理论的基本原理,分子结构由电子密度场上的驻点给出。 (zh)
|