About: Calabi–Eckmann manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCalabi%E2%80%93Eckmann_manifold&invfp=IFP_OFF&sas=SAME_AS_OFF

In complex geometry, a part of mathematics, a Calabi–Eckmann manifold (or, often, Calabi–Eckmann space), named after Eugenio Calabi and Beno Eckmann, is a complex, homogeneous, non-Kähler manifold, homeomorphic to a product of two odd-dimensional spheres of dimension ≥ 3. The Calabi–Eckmann manifold is constructed as follows. Consider the space , where , equipped with an action of the group : The natural projection Calabi and Eckmann discovered these manifolds in 1953.

AttributesValues
rdf:type
rdfs:label
  • Calabi–Eckmann manifold (en)
rdfs:comment
  • In complex geometry, a part of mathematics, a Calabi–Eckmann manifold (or, often, Calabi–Eckmann space), named after Eugenio Calabi and Beno Eckmann, is a complex, homogeneous, non-Kähler manifold, homeomorphic to a product of two odd-dimensional spheres of dimension ≥ 3. The Calabi–Eckmann manifold is constructed as follows. Consider the space , where , equipped with an action of the group : The natural projection Calabi and Eckmann discovered these manifolds in 1953. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In complex geometry, a part of mathematics, a Calabi–Eckmann manifold (or, often, Calabi–Eckmann space), named after Eugenio Calabi and Beno Eckmann, is a complex, homogeneous, non-Kähler manifold, homeomorphic to a product of two odd-dimensional spheres of dimension ≥ 3. The Calabi–Eckmann manifold is constructed as follows. Consider the space , where , equipped with an action of the group : where is a fixed complex number. It is easy to check that this action is free and proper, and the corresponding orbit space M is homeomorphic to . Since M is a quotient space of a holomorphic action, it is also a complex manifold. It is obviously homogeneous, with a transitive holomorphic action of A Calabi–Eckmann manifold M is non-Kähler, because . It is the simplest example of a non-Kählermanifold which is simply connected (in dimension 2, all simply connected compact complex manifolds are Kähler). The natural projection induces a holomorphic map from the corresponding Calabi–Eckmann manifold M to . The fiber of this map is an elliptic curve T, obtained as a quotient of by the lattice . This makes M into a principal T-bundle. Calabi and Eckmann discovered these manifolds in 1953. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software