In mathematics, Cartan formula can mean:
* one in differential geometry: , where , and are Lie derivative, exterior derivative, and interior product, respectively, acting on differential forms. See interior product for the detail. It is also called the Cartan homotopy formula or Cartan magic formula. This formula is named after Élie Cartan.
* one in algebraic topology, which is one of the five axioms of Steenrod algebra. It reads:. See Steenrod algebra for the detail. The name derives from Henri Cartan, son of Élie.
Attributes | Values |
---|
rdfs:label
| - Cartan-Formel (de)
- Cartan formula (en)
- Fórmula de Cartan (pt)
|
rdfs:comment
| - In der Mathematik ist die Cartan-Formel eine in der Differentialgeometrie und besonders der symplektischen Geometrie häufig verwendete Formel. Sie besagt, dass für jede Differentialform und jedes Vektorfeld die Gleichung gilt, wobei die Lie-Ableitung, die äußere Ableitung und die Kontraktion einer Differentialform bezeichnet. (de)
- In mathematics, Cartan formula can mean:
* one in differential geometry: , where , and are Lie derivative, exterior derivative, and interior product, respectively, acting on differential forms. See interior product for the detail. It is also called the Cartan homotopy formula or Cartan magic formula. This formula is named after Élie Cartan.
* one in algebraic topology, which is one of the five axioms of Steenrod algebra. It reads:. See Steenrod algebra for the detail. The name derives from Henri Cartan, son of Élie. (en)
- Em Geometria Diferencial, as fórmulas de Cartan relacionam a derivada de Lie ao longo de um campo vetorial, a derivada exterior e a contração. (pt)
|
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In der Mathematik ist die Cartan-Formel eine in der Differentialgeometrie und besonders der symplektischen Geometrie häufig verwendete Formel. Sie besagt, dass für jede Differentialform und jedes Vektorfeld die Gleichung gilt, wobei die Lie-Ableitung, die äußere Ableitung und die Kontraktion einer Differentialform bezeichnet. (de)
- In mathematics, Cartan formula can mean:
* one in differential geometry: , where , and are Lie derivative, exterior derivative, and interior product, respectively, acting on differential forms. See interior product for the detail. It is also called the Cartan homotopy formula or Cartan magic formula. This formula is named after Élie Cartan.
* one in algebraic topology, which is one of the five axioms of Steenrod algebra. It reads:. See Steenrod algebra for the detail. The name derives from Henri Cartan, son of Élie. (en)
- Em Geometria Diferencial, as fórmulas de Cartan relacionam a derivada de Lie ao longo de um campo vetorial, a derivada exterior e a contração. (pt)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |