About: Chabauty topology     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Building, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9cXoJms8Fh

In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology.

AttributesValues
rdf:type
rdfs:label
  • Chabauty-Topologie (de)
  • Chabauty topology (en)
rdfs:comment
  • In der Mathematik ist die Chabauty-Topologie eine Topologie auf dem Raum der abgeschlossenen Untergruppen einer topologischen Gruppe. (de)
  • In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
has abstract
  • In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology. This topology can be derived from the Vietoris topology construction, a topological structure on all non-empty subsets of a space. More precisely, it is an adaptation of the Fell topology construction, which itself derives from the Vietoris topology concept. (en)
  • In der Mathematik ist die Chabauty-Topologie eine Topologie auf dem Raum der abgeschlossenen Untergruppen einer topologischen Gruppe. (de)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 71 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software