In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Chabauty-Topologie (de)
- Chabauty topology (en)
|
rdfs:comment
| - In der Mathematik ist die Chabauty-Topologie eine Topologie auf dem Raum der abgeschlossenen Untergruppen einer topologischen Gruppe. (de)
- In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology. (en)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
has abstract
| - In mathematics, the Chabauty topology is a certain topological structure introduced in 1950 by Claude Chabauty, on the set of all closed subgroups of a locally compact group G. The intuitive idea may be seen in the case of the set of all lattices in a Euclidean space E. There these are only certain of the closed subgroups: others can be found by in a sense taking limiting cases or degenerating a certain sequence of lattices. One can find linear subspaces or discrete groups that are lattices in a subspace, depending on how one takes a limit. This phenomenon suggests that the set of all closed subgroups carries a useful topology. This topology can be derived from the Vietoris topology construction, a topological structure on all non-empty subsets of a space. More precisely, it is an adaptation of the Fell topology construction, which itself derives from the Vietoris topology concept. (en)
- In der Mathematik ist die Chabauty-Topologie eine Topologie auf dem Raum der abgeschlossenen Untergruppen einer topologischen Gruppe. (de)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |