About: Cottrell equation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatElectrochemicalEquations, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCottrell_equation&invfp=IFP_OFF&sas=SAME_AS_OFF

In electrochemistry, the Cottrell equation describes the change in electric current with respect to time in a controlled potential experiment, such as chronoamperometry. Specifically it describes the current response when the potential is a step function in time. It was derived by Frederick Gardner Cottrell in 1903. For a simple redox event, such as the ferrocene/ferrocenium couple, the current measured depends on the rate at which the analyte diffuses to the electrode. That is, the current is said to be "diffusion controlled." The Cottrell equation describes the case for an electrode that is planar but can also be derived for spherical, cylindrical, and rectangular geometries by using the corresponding Laplace operator and boundary conditions in conjunction with Fick's second law of diffu

AttributesValues
rdf:type
rdfs:label
  • Cottrell equation (en)
  • Équation de Cottrell (fr)
  • Equazione di Cottrell (it)
rdfs:comment
  • In electrochemistry, the Cottrell equation describes the change in electric current with respect to time in a controlled potential experiment, such as chronoamperometry. Specifically it describes the current response when the potential is a step function in time. It was derived by Frederick Gardner Cottrell in 1903. For a simple redox event, such as the ferrocene/ferrocenium couple, the current measured depends on the rate at which the analyte diffuses to the electrode. That is, the current is said to be "diffusion controlled." The Cottrell equation describes the case for an electrode that is planar but can also be derived for spherical, cylindrical, and rectangular geometries by using the corresponding Laplace operator and boundary conditions in conjunction with Fick's second law of diffu (en)
  • L'équation de Cottrell (du nom de l'Américain Frederick Gardner Cottrell) concerne les techniques d'électrochimie transitoire. Elle montre que, lorsqu'un saut de potentiel est imposé à une électrode, le courant électrique décroît selon l'inverse de la racine carrée du temps. Dans le cas d'une réaction d'oxydo-réduction du type R → O + ne−, où R est le réducteur et O l'oxydant d'un couple rédox, l'équation de Cottrell s'écrit : Avec : (fr)
  • In elettrochimica, l'equazione di Cottrel descrive il cambiamento in corrente elettrica rispetto al tempo in un esperimento a potenziale controllato, come nella cronoamperometria. Per un semplice processo redox, come nel caso della coppia ferrocene/ferrocenio, la corrente misurata dipende dalla velocità con la quale l'analita diffonde all'elettrodo. Vale a dire, la corrente si definisce come "controllata dalla diffusione". dove (it)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In electrochemistry, the Cottrell equation describes the change in electric current with respect to time in a controlled potential experiment, such as chronoamperometry. Specifically it describes the current response when the potential is a step function in time. It was derived by Frederick Gardner Cottrell in 1903. For a simple redox event, such as the ferrocene/ferrocenium couple, the current measured depends on the rate at which the analyte diffuses to the electrode. That is, the current is said to be "diffusion controlled." The Cottrell equation describes the case for an electrode that is planar but can also be derived for spherical, cylindrical, and rectangular geometries by using the corresponding Laplace operator and boundary conditions in conjunction with Fick's second law of diffusion. where, = current, in units of A = number of electrons (to reduce/oxidize one molecule of analyte , for example) = Faraday constant, 96485 C/mol = area of the (planar) electrode in cm2 = initial concentration of the reducible analyte in mol/cm3; = diffusion coefficient for species in cm2/s = time in s. Deviations from linearity in the plot of sometimes indicate that the redox event is associated with other processes, such as association of a ligand, dissociation of a ligand, or a change in geometry. In practice, the Cottrell equation simplifies to , where is the collection of constants for a given system. (en)
  • L'équation de Cottrell (du nom de l'Américain Frederick Gardner Cottrell) concerne les techniques d'électrochimie transitoire. Elle montre que, lorsqu'un saut de potentiel est imposé à une électrode, le courant électrique décroît selon l'inverse de la racine carrée du temps. Dans le cas d'une réaction d'oxydo-réduction du type R → O + ne−, où R est le réducteur et O l'oxydant d'un couple rédox, l'équation de Cottrell s'écrit : Avec : * I : courant (A) ; * t : temps (s) ; * n : nombre d'électrons échangés (mol) ; * F : constante de Faraday (96485 C.mol-1) ; * A : surface de l'électrode (cm2) ; * cR : concentration interfaciale de R (mol.cm-3) ; * DR : coefficient de diffusion de R (cm2.s-1) . (fr)
  • In elettrochimica, l'equazione di Cottrel descrive il cambiamento in corrente elettrica rispetto al tempo in un esperimento a potenziale controllato, come nella cronoamperometria. Per un semplice processo redox, come nel caso della coppia ferrocene/ferrocenio, la corrente misurata dipende dalla velocità con la quale l'analita diffonde all'elettrodo. Vale a dire, la corrente si definisce come "controllata dalla diffusione". L'equazione di Cottrell tratta il caso di un elettrodo piano ma può essere applicata anche a geometrie sferiche, cilindriche, e rettangolari, utilizzando il corrispondente operatore di Laplace e condizioni al contorno insieme con la seconda legge di Fick: dove * i è la corrente elettrica; * n il numero di elettroni implicati; * F la costante di Faraday; * A l'area dell'elettrodo piano; * cjO la concentrazione molecolare iniziale di analita; * Dj la diffusività di materia della specie j-esima; * t tempo in s. Riportando in un grafico l'andamento della corrente i contro Δt-1/2 è anche possibile mettere in evidenza eventuali deviazioni dalla linearità che indicano la concomitanza con l'evento redox di altri processi, come l'associazione o dissociazione di un ligando, oppure un cambiamento della geometria. (it)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software