About: Cryptochirality     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:SupremeCourtOfTheUnitedStatesCase, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FCryptochirality&invfp=IFP_OFF&sas=SAME_AS_OFF

In stereochemistry, cryptochirality is a special case of chirality in which a molecule is chiral but its specific rotation is non-measurable. The underlying reason for the lack of rotation is the specific electronic properties of the molecule. The term was introduced by Kurt Mislow in 1977. For example, the alkane 5-ethyl-5-propylundecane found in certain species of Phaseolus vulgaris is chiral at its central quaternary carbon, but neither enantiomeric form has any observable optical rotation:

AttributesValues
rdf:type
rdfs:label
  • Criptoquiralidad (es)
  • Cryptochirality (en)
rdfs:comment
  • In stereochemistry, cryptochirality is a special case of chirality in which a molecule is chiral but its specific rotation is non-measurable. The underlying reason for the lack of rotation is the specific electronic properties of the molecule. The term was introduced by Kurt Mislow in 1977. For example, the alkane 5-ethyl-5-propylundecane found in certain species of Phaseolus vulgaris is chiral at its central quaternary carbon, but neither enantiomeric form has any observable optical rotation: (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Cryptochiral_asymmetric_autocatalysis_in_Soai_reaction.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Cryptochirality.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
thumbnail
has abstract
  • In stereochemistry, cryptochirality is a special case of chirality in which a molecule is chiral but its specific rotation is non-measurable. The underlying reason for the lack of rotation is the specific electronic properties of the molecule. The term was introduced by Kurt Mislow in 1977. For example, the alkane 5-ethyl-5-propylundecane found in certain species of Phaseolus vulgaris is chiral at its central quaternary carbon, but neither enantiomeric form has any observable optical rotation: It is still possible to distinguish between the two enantiomers by using them in asymmetric synthesis of another chemical whose stereochemical nature can be measured. For example, the Soai reaction of 2-(3,3-dimethylbut-1-ynyl)pyrimidine-5-carbaldehyde with diisopropylzinc performed in the presence of 5-ethyl-5-propylundecane forms a secondary alcohol with a high enantiomeric excess based on the major enantiomer of the alkane that was used. Even a slight enantiomeric excess of the alkane is rapidly amplified due to the autocatalytic nature of this reaction. Cryptochirality also occurs in polymeric systems growing from chiral initiators, for example in dendrimers having lobes of different sizes attached to a central core. The term is also used to describe a situation where an enantiomeric excess lies far below the observational horizon, but is still relevant, e.g. in highly enantiosensitive, self-amplifying reactions. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software