About: Deep-sub-voltage nanoelectronics     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDeep-sub-voltage_nanoelectronics&invfp=IFP_OFF&sas=SAME_AS_OFF

Deep-sub-voltage nanoelectronics are integrated circuits (ICs) operating near theoretical limits of energy consumption per unit of processing. These devices are intended to address the needs of applications such as wireless sensor networks which have dramatically different requirements from traditional electronics. For example, for microprocessors where performance is primary metric of interest, but for some new devices, energy per instruction may be a more sensible metric. The important case of fundamental ultimate limit for logic operation is the reversible computing.

AttributesValues
rdfs:label
  • Deep-sub-voltage nanoelectronics (en)
rdfs:comment
  • Deep-sub-voltage nanoelectronics are integrated circuits (ICs) operating near theoretical limits of energy consumption per unit of processing. These devices are intended to address the needs of applications such as wireless sensor networks which have dramatically different requirements from traditional electronics. For example, for microprocessors where performance is primary metric of interest, but for some new devices, energy per instruction may be a more sensible metric. The important case of fundamental ultimate limit for logic operation is the reversible computing. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Deep-sub-voltage nanoelectronics are integrated circuits (ICs) operating near theoretical limits of energy consumption per unit of processing. These devices are intended to address the needs of applications such as wireless sensor networks which have dramatically different requirements from traditional electronics. For example, for microprocessors where performance is primary metric of interest, but for some new devices, energy per instruction may be a more sensible metric. The important case of fundamental ultimate limit for logic operation is the reversible computing. The tiny autonomous devices (for example smartdust or autonomous Microelectromechanical systems) are based on deep-sub-voltage nanoelectronics. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software