rdfs:comment
| - في نظرية المخططات، درجة رأس من رؤوس مخطط ما هو عدد الحواف الواصلة إلى ذلك الرأس. (ar)
- En teoria de grafs, el grau o valència d'un vèrtex és el nombre d'arestes que hi incideixen, amb els bucles comptats dues vegades. El grau d'un vèrtex v es denota grau(v), g(v) o gr(v) (tot i que també es fa servir δ(v), i de l'anglès d(v) i deg(v)). El grau màxim d'un graf G, denotat com Δ(G), i el grau mínim d'un graf G, denotat com δ(G), són respectivament els graus màxim i mínim dels seus vèrtexs. Al graf de la dreta, el grau màxim és 3 i el grau mínim és 0. En un graf regular tots els graus són iguals, i per tant es pot parlar del grau del graf. (ca)
- V teorii grafů se pojmem stupeň vrcholu (někdy též valence vrcholu) označuje počet hran, které do daného vrcholu zasahují. Stupeň vrcholu u se značí deg(u). Přesnější definice závisí na tom, zda je graf orientovaný nebo neorientovaný. (cs)
- Grad (auch Knotengrad oder Valenz) ist ein grundlegender Begriff der Graphentheorie, eines Teilgebiets der Mathematik. Der Grad eines Knotens ist die Anzahl von Kanten, die an ihn angrenzen. (de)
- En grafeteorio la grado de vertico de grafeo estas la nombro de eĝoj ligitaj per la vertico; buklo kalkuliĝu dufoje. La gradon de vertico oni signas per aŭ . La maksimuma grado de grafeo G, signiĝas per Δ(G), kaj la minimuma grafeo δ(G). En la dekstra grafeo, la maksimuma grado estas 5, dum la minimuma grado estas 0. En regula grafeo, ĉiu vertico havas la saman gradon kaj do oni povas priskribi la gradon de la grafeo. (eo)
- En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . (fr)
- グラフ理論における次数(じすう、英: degree, valency)は、グラフの頂点に接合する辺の数を意味し、ループであれば2回カウントされる。頂点 の次数を と表記する。グラフ G の最大次数を Δ(G) と表記し、その中の頂点群の最大次数を意味する。また、グラフの最小次数は δ(G) と表記し、その中の頂点群の最小次数を意味する。右のグラフでは、最大次数は3、最小次数は0である。正則グラフでは全頂点の次数が等しく、その次数をグラフの次数と呼ぶこともある。 有向グラフでは、頂点に入ってくる辺数を入次数 (indegree)、頂点から出て行く辺数を出次数 (outdegree) と呼ぶ。 (ja)
- Степень (валентность) вершины графа — количество рёбер графа , инцидентных вершине . При подсчёте степени ребро-петля учитывается дважды. Степень вершины обычно обозначается как или . Максимальная и минимальная степень вершин графа G обозначаются соответственно Δ(G) и δ(G). На рис. 1 максимальная степень равна 5, минимальная — 0. В регулярном графе степени всех вершин одинаковы, поэтому в данном случае можно говорить о степени графа. (ru)
- Stopień wierzchołka – liczba krawędzi grafu incydentnych do wierzchołka. Jest on równy sumie liczb wszystkich łuków wchodzących, wychodzących, krawędzi i pętli; W grafach skierowanych można też wyróżnić stopień wchodzący i stopień wychodzący. Są to odpowiednio liczby łuków wchodzących do i wychodzących z wierzchołka. Stopień wierzchołka oznacza się w następujący sposób: . (pl)
- Na teoria dos grafos, o grau (ou valência) de um vértice de um grafo é o número de arestas incidentes para com o vértice, com os laços contados duas vezes. Ou de forma análoga, o número de vértices adjacentes a ele. O grau de um vértice é denotado O grau máximo de um grafo G, denotado por Δ(G), e o grau mínimo de um grafo, denotado por δ(G), são os graus máximos e mínimos de seus vértices. No grafo à direita, o grau máximo é 3 e o mínimo é 0. Em um grafo regular, todos os graus são os mesmos, e assim podemos falar de o grau do grafo [sic?]. (pt)
- Med begreppet grad eller valens avser man inom grafteorin antalet kanter som är anslutna till en viss nod. Med deg(v) betecknas graden för noden v. (sv)
- 在图论中,一个顶点在图中的度 (degree)为与这个顶点相连接的边的数目。在多重图中,自环被计数两次。 顶点 的度记作或。图G的最大度记作Δ(G),最小度记作δ(G),分别为图中所有顶点度的最大值和最小值。 在右边的多重图中,最大度为5,最小度为0。 在正则图中,所有度都是相同的,因为我们可以直接说该图的度是多少。 完全图是正则图中的一种特殊情况,其任意两个点均相连,若顶点数为p,则该图的度为p-1。 给定一个图,其度求和公式为: 该公式表明,在任意无向图中,度为奇数的顶点的个数为偶数,即为。该定理名称来自于一个热门的数学问题,即证明在一个团体中与他人握手奇数次的人的数量为偶数个。 对于有向图:
* 节点(顶点)的入度是指进入该节点(顶点)的边的条数;
* 节点(顶点)的出度是指从该节点(顶点)出发的边的条数。 (zh)
- Степінь вершини (англ. degree, також валентність, англ. valency) в теорії графів — кількість ребер графу , інцидентних вершині . При підрахунку степені ребро-петля враховується двічі. Степінь вершини позначається як , інколи як . Максимальна і мінімальна степені вершин графу G позначаються відповідно Δ(G) і δ(G). На рисунку 1 максимальна степінь дорівнює 5, мінімальна — 0. В регулярному графі степені всіх вершин однакові, тому в цьому випадку можна говорити про степінь графу. (uk)
- In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph , denoted by , and the minimum degree of a graph, denoted by , are the maximum and minimum of its vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0. (en)
- En Teoría de grafos, el grado o valencia de un vértice es el número de aristas incidentes al vértice. El grado de un vértice x es denotado por grado(x), g(x) o gr(x) (aunque también se usa δ(x), y del inglés d(x) y deg(x)). El grado máximo de un grafo G es denotado por Δ(G) y el grado mínimo de un grafo G es denotado por δ(G). (es)
- De graad of valentie van een knoop in een graaf is het aantal buren van die knoop. Grafen zijn het onderwerp van studie van de grafentheorie. De graad is in een niet-gerichte graaf dus het aantal bogen dat in de knoop samenkomt. Er wordt voor een gerichte graaf onderscheid gemaakt tussen de inkomende en de uitgaande graad, het aantal bogen dat in een knoop samenkomt en het aantal bogen dat vertrekt. (nl)
|