About: Dimension theorem for vector spaces     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDimension_theorem_for_vector_spaces&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension of the vector space. Formally, the dimension theorem for vector spaces states that Given a vector space V, any two bases have the same cardinality. As a basis is a generating set that is linearly independent, the theorem is a consequence of the following theorem, which is also useful:

AttributesValues
rdf:type
rdfs:label
  • Teorema de la dimensió per espais vectorials (ca)
  • Dimension theorem for vector spaces (en)
  • Théorème de la dimension pour les espaces vectoriels (fr)
  • Teorema della dimensione per spazi vettoriali (it)
rdfs:comment
  • En mathématiques, le théorème de la dimension pour les espaces vectoriels énonce que deux bases quelconques d'un même espace vectoriel ont même cardinalité. Joint au théorème de la base incomplète qui assure l'existence de bases, il permet de définir la dimension d'un espace vectoriel comme le cardinal (fini ou infini) commun à toutes ses bases. (fr)
  • In matematica, il teorema della dimensione per spazi vettoriali afferma che basi diverse di uno stesso spazio vettoriale hanno la stessa cardinalità, ovvero sono costituite dallo stesso numero di elementi. La cardinalità della base è inoltre pari alla dimensione dello spazio. In altri termini, sia uno spazio vettoriale su un campo . Siano e due basi di la cui dimensione sia rispettivamente e . Allora . (it)
  • En matemàtiques, el teorema de la dimensió per espais vectorials afirma que totes les bases d'un espai vectorial tenen el mateix nombre d'elements. Aquest nombre d'elements pot ser finit, o bé un nombre cardinal infinit, que defineix la dimensió de l'espai vectorial. Formalment, el teorema de la dimensió per espais vectorials afirma que Donat un espai vectorial V, dos sistemes generadors linealment independents qualssevol (en altres paraules, dues bases qualssevol) tenen la mateixa cardinalitat. (ca)
  • In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension of the vector space. Formally, the dimension theorem for vector spaces states that Given a vector space V, any two bases have the same cardinality. As a basis is a generating set that is linearly independent, the theorem is a consequence of the following theorem, which is also useful: (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
em
text
  • , (en)
  • In a vector space , if is a generating set, and is a linearly independent set, then the cardinality of is not larger than the cardinality of . (en)
  • Given a vector space , any two bases have the same cardinality. (en)
has abstract
  • En matemàtiques, el teorema de la dimensió per espais vectorials afirma que totes les bases d'un espai vectorial tenen el mateix nombre d'elements. Aquest nombre d'elements pot ser finit, o bé un nombre cardinal infinit, que defineix la dimensió de l'espai vectorial. Formalment, el teorema de la dimensió per espais vectorials afirma que Donat un espai vectorial V, dos sistemes generadors linealment independents qualssevol (en altres paraules, dues bases qualssevol) tenen la mateixa cardinalitat. Si V és un mòdul finitament generat, llavors té una base finita, i el resultat afirma que dues bases qualssevol tenen el mateix nombre d'elements. Mentre que la demostració de l'existència d'una base per qualsevol espai vectorial requereix el Lema de Zorn (equivalent a l'axioma de l'elecció), la unicitat de la cardinalitat de la base només necessita el lema de l'ultrafiltre, que és estrictament més feble; tot i això, la demostració que en donarem assumeix la , és a dir, que tots els nombres cardinals són comparables, una afirmació que és equivalent a l'axioma de l'elecció. Aquest teorema es pot generalitzar a R-mòduls amb . El teorema pel cas finitament generat no necessita l'axioma de l'elecció, sinó que es pot demostrar amb arguments bàsics de l'àlgebra lineal. (ca)
  • In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension of the vector space. Formally, the dimension theorem for vector spaces states that Given a vector space V, any two bases have the same cardinality. As a basis is a generating set that is linearly independent, the theorem is a consequence of the following theorem, which is also useful: In a vector space V, if G is a generating set, and I is a linearly independent set, then the cardinality of I is not larger than the cardinality of G. In particular if V is finitely generated, then all its bases are finite and have the same number of elements. While the proof of the existence of a basis for any vector space in the general case requires Zorn's lemma and is in fact equivalent to the axiom of choice, the uniqueness of the cardinality of the basis requires only the ultrafilter lemma, which is strictly weaker (the proof given below, however, assumes trichotomy, i.e., that all cardinal numbers are comparable, a statement which is also equivalent to the axiom of choice). The theorem can be generalized to arbitrary R-modules for rings R having invariant basis number. In the finitely generated case the proof uses only elementary arguments of algebra, and does not require the axiom of choice nor its weaker variants. (en)
  • En mathématiques, le théorème de la dimension pour les espaces vectoriels énonce que deux bases quelconques d'un même espace vectoriel ont même cardinalité. Joint au théorème de la base incomplète qui assure l'existence de bases, il permet de définir la dimension d'un espace vectoriel comme le cardinal (fini ou infini) commun à toutes ses bases. (fr)
  • In matematica, il teorema della dimensione per spazi vettoriali afferma che basi diverse di uno stesso spazio vettoriale hanno la stessa cardinalità, ovvero sono costituite dallo stesso numero di elementi. La cardinalità della base è inoltre pari alla dimensione dello spazio. In altri termini, sia uno spazio vettoriale su un campo . Siano e due basi di la cui dimensione sia rispettivamente e . Allora . (it)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software