About: Drift waves     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FDrift_waves&invfp=IFP_OFF&sas=SAME_AS_OFF

In plasma physics, a drift wave is a type of collective excitation that is driven by a pressure gradient within a magnetised plasma, which can be destabilised by differences between ion and electron motion (then known as drift-wave instability or drift instability). The drift wave typically propagates across the pressure gradient and is perpendicular to the magnetic field. It can occur in relatively simple configurations such as in a column of plasma with a non-uniform density but a straight magnetic field. Drift wave turbulence is responsible for the transport of particles, energy and momentum across magnetic field lines.

AttributesValues
rdfs:label
  • Drift waves (en)
rdfs:comment
  • In plasma physics, a drift wave is a type of collective excitation that is driven by a pressure gradient within a magnetised plasma, which can be destabilised by differences between ion and electron motion (then known as drift-wave instability or drift instability). The drift wave typically propagates across the pressure gradient and is perpendicular to the magnetic field. It can occur in relatively simple configurations such as in a column of plasma with a non-uniform density but a straight magnetic field. Drift wave turbulence is responsible for the transport of particles, energy and momentum across magnetic field lines. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In plasma physics, a drift wave is a type of collective excitation that is driven by a pressure gradient within a magnetised plasma, which can be destabilised by differences between ion and electron motion (then known as drift-wave instability or drift instability). The drift wave typically propagates across the pressure gradient and is perpendicular to the magnetic field. It can occur in relatively simple configurations such as in a column of plasma with a non-uniform density but a straight magnetic field. Drift wave turbulence is responsible for the transport of particles, energy and momentum across magnetic field lines. The characteristic frequency associated with drift waves involving electron flow is given by , where is the wavenumber perpendicular to the pressure gradient of the plasma, is the Boltzmann constant, is the electron temperature, is the elementary charge, is the background magnetic field and is the density gradient of the plasma. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software