rdfs:comment
| - En geometria, el políedre dual d'un políedre P és un políedre Q, obtingut mitjançant l'intercanvi dels papers dels vèrtexs i les cares de P. El dual de Q és altre cop P. Si P i Q tenen la mateixa estructura combinatòria, P s'anomena autodual. Entre els 5 sòlids platònics, el tetràedre és autodual, mentre que el cub i l'octàedre són d'un dual de l'altre, igual com licosàedre i el dodecàedre també són duals l'un de l'altre. El dual d'un sòlid arquimedià és un sòlid de Catalan. (ca)
- Duální mnohostěn je takový mnohostěn, který vznikne, vytvoříme-li ze stěn nějakého původního mnohostěnu vrcholy a spojíme je (vytvoříme hrany) podle toho, zdali stěny v původním mnohostěnu sousedily. Vezmeme-li kupříkladu krychli a vytvoříme k ní duální mnohostěn, vznikne osmistěn. (Viz obrázek.) (cs)
- El dual de un poliedro es un poliedro cuyos vértices corresponden a las caras del poliedro original, y las uniones entre estos corresponden a las uniones entre las caras del poliedro original. El dual del dual de un poliedro es similar al poliedro original. El dual de un poliedro isotoxal también es isotoxal. El dual de un poliedro isoedral es isogonal, y viceversa. (es)
- 双対多面体(そうついためんたい、英語:dual polyhedron)、ある立体の頂点と面を入れ替えた立体のことをいう。具体的には、面の重心を新たな頂点とし、辺で接する面の重心同士を辺で結び(したがって辺の数は変わらない)、頂点で接する面の重心を結ぶ多角形を面とする。ただし、定量的な長さや角度を問題とせず、トポロジー(頂点・辺・面の接する関係)だけを問題とすることもある。3次元における双対多胞体である。多面体について述べていることが自明なときは単に双対という。双対多面体の双対多面体は元の多面体である。自身と双対関係にある多面体を自己双対多面体という。 (ja)
- 쌍대다면체는 각 면의 중심을 꼭짓점으로 해서 이어 만든 다면체이다. 따라서 어떤 다면체의 면의 개수는 그 쌍대다면체의 꼭짓점의 개수와 같다. 명칭에서 알 수 있듯이, 어떤 다면체의 쌍대다면체의 쌍대다면체는 다시 그 도형이 된다. 또 (정)다각형 면의 꼭짓점 수와 (정)다각형이 모인 개수가 동일한 다면체를 자기쌍대라고 한다. 정사면체 (삼각뿔)를 포함한 모든 각뿔이 그러한 예 중 하나이다. 정사각형 타일링처럼 평면 쪽매맞춤도 한 꼭짓점에 모인 개수와 면의 꼭짓점의 수만 같으면 자기쌍대가 될 수 있다. 하지만 어떤 다면체의 쌍대다면체의 쌍대다면체는 다시 그 도형이 되지만 그 쌍대다면체의 쌍대다면체의 크기는 원래 어떤 도형보다 줄어든다. 다각형의 경우 꼭짓점의 수가 항상 변의 개수와 같기 때문에 쌍대 역시 변과 꼭짓점의 개수가 같은 다각형이다. 모든 삼각형, 정다각형, 모든 평행사변형은 자기쌍대이며 직사각형의 쌍대는 마름모, 등변사다리꼴의 쌍대는 볼록 연꼴, 등각다각형의 쌍대는 볼록 등변다각형이다. (ko)
- In geometria, il poliedro duale di un poliedro è un altro poliedro , tale che ad ogni vertice di corrisponde una ed una sola faccia di . In altre parole, lo si ottiene scambiando i ruoli dei vertici e delle facce di . Il duale di è di nuovo . Se e hanno la stessa struttura combinatoria, è detto autoduale. Fra i 5 solidi platonici, il tetraedro è autoduale, mentre cubo e ottaedro sono uno duale dell'altro; anche icosaedro e dodecaedro sono uno duale dell'altro. Il duale di un solido archimedeo è un solido di Catalan. (it)
- Многогранник, двойственный (или дуальный) к заданному многограннику — многогранник, у которого каждой грани исходного многогранника соответствует вершина двойственного, каждой вершине исходного — грань двойственного. Количество рёбер исходного и двойственного многогранника одинаково. Многогранник, двойственный двойственному, гомотетичен исходному. (ru)
- 在幾何學,若一種多面體的每個頂點均能對應到另一種多面體上的每個面的中心,它就是對方的對偶多面體。 根據,每種多面體都存在對偶多面體。一種多面體的對偶多面體的對偶多面體等同該種多面體。 對偶的性質可以透過一個已知的球定義。每個頂點都在一個平面之上,使得由中心向頂點的射線都和平面垂直,且中心和每點的距離的平方等於半徑的平方。在坐標來說,關於球: , 頂點 和平面結合 相應的對偶多面體的頂點就是原來多面體的面的對應,而對偶多面體的面就是原來多面體的頂點的對應。另外,相鄰頂點定義出的棱能對應出兩個相鄰面,這些面的相交線亦定義出對偶多面體的一條棱。 這些規則能一般化到維空間,以定義出對偶多胞形。多胞形的頂點能對應到對偶者的維的元素,而點能定義維元素,該元素能對應到超平面,超平面相交的位置能給出一個維元素。蜂巢的對偶也能以近似方式定義。 這個對偶的概念和射影幾何中的對偶相關。 反角柱的對偶多面體是偏方面體,每面均呈鳶形。 (zh)
- Многогранник, дуальний до заданого многогранника — многогранник, у якого кожній грані вихідного многогранника відповідає вершина дуального, кожній вершині вихідного — грань дуального. Кількість ребер вихідного і дуального многогранників однакові. Многогранник, дуальний дуальному, гомотетичний вихідному. (uk)
- In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. (en)
- Geometrian, poliedro baten poliedro duala beste poliedro bat da, -ren erpinak poliedroaren aurpegien erdiguneetan kokatuz lortzen dena. -ren duala, berriz, da; hau da, poliedro dualaren duala jatorrizko poliedroa da. Hortaz, dualak izeneko bikoteetan elkartzen dira poliedroak. (eu)
- En géométrie, il existe plusieurs façons (géométrique, combinatoire) de mettre les polyèdres en dualité : on peut se passer de support géométrique et définir une notion de dualité en termes purement combinatoires, qui s'étend d'ailleurs aux polyèdres et polytopes abstraits. Dans chaque cas, à tout polyèdre est associé un polyèdre appelé dual du premier, tel que :
* le dual du polyèdre dual est le polyèdre initial,
* les faces de l'un sont en correspondance avec les sommets de l'autre, en respectant les propriétés d'adjacence. On peut aussi utiliser la indiquée plus loin. (fr)
- Em geometria, os poliedros estão associados aos pares, chamados duais, onde os vértices de um inscrevem às faces do outro. O dual do dual é o poliedro original. O dual de um poliedro com vértices equivalentes é um com faces equivalentes, e de um com arestas equivalentes é outro com arestas equivalentes. Assim os poliedros regulares — os Sólidos Platónicos e os Poliedros de Kepler-Poinsot — estão organizados em pares de duais. Os sólidos duais dos sólidos de Arquimedes são os Sólidos de Catalan e vice-versa. (pt)
- In de ruimtemeetkunde worden twee typen veelvlakken elkaars duale veelvlakken genoemd, als er een tweeplaatsige relatie tussen beide veelvlakken is, waarin de zijvlakken van het eerste veelvlak overeenkomen met de hoekpunten van het andere veelvlak en omgekeerd. Daarbij worden twee veelvlakken slechts van hetzelfde type genoemd, wanneer ze gelijkvormig zijn. De twee ruimtelijke figuren zijn bijgevolg erg verwant met elkaar. Een voorbeeld is de kubus met als duaal veelvlak het regelmatige achtvlak. Wiskundige dualiteit wordt soms ook reciprociteit of polariteit genoemd. (nl)
- Wielościan dualny W' do wielościanu W to wielościan skonstruowany w następujący sposób:
* W środku masy każdej ściany W umieszczamy wierzchołek W'.
* Jeśli dwie ściany W miały wspólną krawędź, ich środki łączymy krawędzią w W'.
* Wypełniamy powstałe brzegi wielokątów ścianami, a ograniczoną przez nie przestrzeń wnętrzem wielościanu W'.
* Powiększamy proporcjonalnie cały wielościan W' tak aby średnia odległość wierzchołków od jego środka masy była identyczna jak w przypadku W. Wielościan W' ma: Wielościan dualny do W' to ponownie wielościan W. Przykłady: (pl)
- Inom geometrin kan polyedrar grupperas i duala par där hörnen på den ena motsvaras av sidorna på den andra och vice versa. Sålunda är en polyeder isomorf med den duala polyedern till sin duala polyeder. Dualen till en isogonal polyeder (med lika vinklar) är en polyeder med lika sidor och en isotoxal polyeder (med lika kanter) har en dual som också är isotoxal. De regelbundna polyedrarna (de Platonska kropparna och ) bildar duala par (till exempel kub och oktaeder eller dodekaeder och ikosaeder) med undantag för den regelbundna tetraedern som är själv-dual (det vill säga är sin egen dual). (sv)
|