About: Early stages of embryogenesis of tailless amphibians     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FEarly_stages_of_embryogenesis_of_tailless_amphibians&invfp=IFP_OFF&sas=SAME_AS_OFF

Embryogenesis in living creatures occurs in different ways depending on class and species. One of the most basic criteria of such development is independence from a water habitat. Amphibians were the earliest animals to adapt themselves to a mixed environment containing both water and dry land. The embryonic development of tailless amphibians is presented below using the African clawed frog (Xenopus laevis) and the northern leopard frog (Rana pipiens) as examples.

AttributesValues
rdfs:label
  • Early stages of embryogenesis of tailless amphibians (en)
rdfs:comment
  • Embryogenesis in living creatures occurs in different ways depending on class and species. One of the most basic criteria of such development is independence from a water habitat. Amphibians were the earliest animals to adapt themselves to a mixed environment containing both water and dry land. The embryonic development of tailless amphibians is presented below using the African clawed frog (Xenopus laevis) and the northern leopard frog (Rana pipiens) as examples. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Embryogenesis in living creatures occurs in different ways depending on class and species. One of the most basic criteria of such development is independence from a water habitat. Amphibians were the earliest animals to adapt themselves to a mixed environment containing both water and dry land. The embryonic development of tailless amphibians is presented below using the African clawed frog (Xenopus laevis) and the northern leopard frog (Rana pipiens) as examples. The oocyte in these frog species is a polarized cell - it has specified axes and poles. The animal pole of the cell contains pigment cells, whereas the vegetal pole (the yolk) contains most of the nutritive material. The pigment is composed of light-absorbing melanin. The sperm cell enters the oocyte in the region of the animal pole. Two blocks - defensive mechanisms meant to prevent polyspermy - occur: the fast block and the slow block. A relatively short time after fertilization, the cortical cytoplasm (located just beneath the cell membrane) rotates by 30 degrees. This results in the creation of the . Its establishment determines the location of the dorsal and ventral (up-down) axis, as well as of the anterior and posterior (front-back) axis and the dextro-sinistral (left-right) axis of the embryo. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software