About: Eberhard's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FEberhard%27s_theorem&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, and more particularly in polyhedral combinatorics, Eberhard's theorem partially characterizes the multisets of polygons that can form the faces of simple convex polyhedra. It states that, for given numbers of triangles, quadrilaterals, pentagons, heptagons, and other polygons other than hexagons,there exists a convex polyhedron with those given numbers of faces of each type (and an unspecified number of hexagonal faces) if and only if those numbers of polygons obey a linear equation derived from Euler's polyhedral formula.

AttributesValues
rdfs:label
  • Eberhard's theorem (en)
rdfs:comment
  • In mathematics, and more particularly in polyhedral combinatorics, Eberhard's theorem partially characterizes the multisets of polygons that can form the faces of simple convex polyhedra. It states that, for given numbers of triangles, quadrilaterals, pentagons, heptagons, and other polygons other than hexagons,there exists a convex polyhedron with those given numbers of faces of each type (and an unspecified number of hexagonal faces) if and only if those numbers of polygons obey a linear equation derived from Euler's polyhedral formula. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Hexagon_in_cube.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In mathematics, and more particularly in polyhedral combinatorics, Eberhard's theorem partially characterizes the multisets of polygons that can form the faces of simple convex polyhedra. It states that, for given numbers of triangles, quadrilaterals, pentagons, heptagons, and other polygons other than hexagons,there exists a convex polyhedron with those given numbers of faces of each type (and an unspecified number of hexagonal faces) if and only if those numbers of polygons obey a linear equation derived from Euler's polyhedral formula. The theorem is named after Victor Eberhard, a blind German mathematician, who published it in 1888 in his habilitation thesis and in expanded form in an 1891 book on polyhedra. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software