rdfs:comment
| - طاقة الوضع المرنة طاقة وضع يحتملها الجسم المادي المرن عند تغيير وضعه في الأصل بضغطه أو تمديده.
* ترميز إنجليزي: Ue = kx2 / 2
* ترميز فرنسي: Epe = kx2 / 2 (ar)
- La energía elástica de deformación es el aumento de energía interna acumulada en el interior de un sólido deformable como resultado del trabajo realizado por las fuerzas que provocan la deformación. (es)
- Energia potentzial elastikoa gorputz elastiko batek bere oreka-posiziotik ateratzen denean duen energia potentziala da. Energia potentzial elastikoa objektuak konprimatzen edo luzatzen direnean ematen da, edo edozein modutan deformatzen badira. batez ere gorputz eta material solidoen deformazio mekaniketan oinarritzen da. Energia potentzial elastikoaren ekuazioa ekilibrio mekanikoaren posizioa ebazteko erabiltzen da. Energia hau potentziala denez, energia zinetikoa bezalako beste energia batean eraldatzen da. Ekuazioa matematikoki horrela adieraz daiteke: (eu)
- En physique, l’énergie potentielle élastique est l'énergie potentielle emmagasinée dans un corps à caractère élastique lorsque ce dernier est compressé ou étiré par rapport à sa position naturelle. Lorsque la force comprimant ou étirant le ressort cesse, le corps tend naturellement à retourner à sa position naturelle et transforme ainsi son énergie potentielle en énergie cinétique. Le caractère élastique d'un objet est remarquable par la capacité de celui-ci à rebondir ou encore à reprendre sa forme après déformation. (fr)
- L’energia elastica è l’energia potenziale alla deformazione elastica di un solido o un fluido (it)
- 弾性エネルギー(だんせいエネルギー、英語: elastic energy)とは、ばねやゴムなどの弾性体の変形に伴うエネルギーである。位置エネルギーの一種である。 (ja)
- Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. (Note however, the work done by a stretched rubber band is not an example of elastic energy. It is an example of entropic elasticity.) The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shap (en)
- Die Verformungsenergie, Formänderungsenergie, Verzerrungsenergie oder elastische Energie (englisch strain energy oder auch stored energy function) tritt bei einer Verformung eines Körpers auf und wird dabei in ihm gespeichert. Sie ist der Energiebetrag, der in Materialien aufgebracht werden muss, um die Abweichungen von der idealen, energieärmsten Materialstruktur zu realisieren. Die Verformungsenergie ist eine Form der Lageenergie in elastischen Systemen, siehe Bild. Dort findet ein an einer elastischen Feder im Schwerefeld der Erde aufgehängtes Gewicht ein Gleichgewicht, in dem die Abnahme an Lageenergie im Schwerefeld gleich der Zunahme an elastischer Energie in der Feder ist. Wird ein weiteres Gewicht angehängt, wird die Feder weiter ausgelenkt und kehrt in die vorherige Lage zurück, (de)
- Define-se energia potencial elástica a energia potencial de uma corda ou mola que possui elasticidade. Se considerarmos que uma mola apresenta comportamento ideal, ou seja, que toda energia que ela recebe para se deformar ela realmente armazena, podemos escrever que a energia potencial acumulada nessa mola vale: Nessa equação, "x" representa a deformação (contração ou distensão) sofrida pela mola, e "K" chamada de constante elástica, de certa forma, mede a dificuldade para se conseguir deformá-la. (pt)
|
has abstract
| - طاقة الوضع المرنة طاقة وضع يحتملها الجسم المادي المرن عند تغيير وضعه في الأصل بضغطه أو تمديده.
* ترميز إنجليزي: Ue = kx2 / 2
* ترميز فرنسي: Epe = kx2 / 2 (ar)
- Die Verformungsenergie, Formänderungsenergie, Verzerrungsenergie oder elastische Energie (englisch strain energy oder auch stored energy function) tritt bei einer Verformung eines Körpers auf und wird dabei in ihm gespeichert. Sie ist der Energiebetrag, der in Materialien aufgebracht werden muss, um die Abweichungen von der idealen, energieärmsten Materialstruktur zu realisieren. Die Verformungsenergie ist eine Form der Lageenergie in elastischen Systemen, siehe Bild. Dort findet ein an einer elastischen Feder im Schwerefeld der Erde aufgehängtes Gewicht ein Gleichgewicht, in dem die Abnahme an Lageenergie im Schwerefeld gleich der Zunahme an elastischer Energie in der Feder ist. Wird ein weiteres Gewicht angehängt, wird die Feder weiter ausgelenkt und kehrt in die vorherige Lage zurück, wenn das zusätzliche Gewicht wieder entfernt wird. Bei linearer Elastizität ist die elastische Energie W der Feder proportional zur Federkonstante D und zum Quadrat der Auslenkung: In anderen Strukturbauteilen existieren vergleichbare Formeln, siehe . Der Auslenkungsprozess ist umkehrbar, solange die Feder nicht überdehnt wird. Das geschieht wenn ihre Elastizitätsgrenze überschritten wird, siehe . Bei Verformung über die Elastizitätsgrenze hinaus nur von Teilen des Körpers, kann es vorkommen, dass sich nicht alle elastisch verformten Bereiche nach Wegnahme der Belastung entspannen, und Gebiete mit Eigenspannungen verbleiben. (de)
- La energía elástica de deformación es el aumento de energía interna acumulada en el interior de un sólido deformable como resultado del trabajo realizado por las fuerzas que provocan la deformación. (es)
- Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. (Note however, the work done by a stretched rubber band is not an example of elastic energy. It is an example of entropic elasticity.) The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity. The essence of elasticity is reversibility. Forces applied to an elastic material transfer energy into the material which, upon yielding that energy to its surroundings, can recover its original shape. However, all materials have limits to the degree of distortion they can endure without breaking or irreversibly altering their internal structure. Hence, the characterizations of solid materials include specification, usually in terms of strains, of its elastic limits. Beyond the elastic limit, a material is no longer storing all of the energy from mechanical work performed on it in the form of elastic energy. Elastic energy of or within a substance is static energy of configuration. It corresponds to energy stored principally by changing the interatomic distances between nuclei. Thermal energy is the randomized distribution of kinetic energy within the material, resulting in statistical fluctuations of the material about the equilibrium configuration. There is some interaction, however. For example, for some solid objects, twisting, bending, and other distortions may generate thermal energy, causing the material's temperature to rise. Thermal energy in solids is often carried by internal elastic waves, called phonons. Elastic waves that are large on the scale of an isolated object usually produce macroscopic vibrations sufficiently lacking in randomization that their oscillations are merely the repetitive exchange between (elastic) potential energy within the object and the kinetic energy of motion of the object as a whole. Although elasticity is most commonly associated with the mechanics of solid bodies or materials, even the early literature on classical thermodynamics defines and uses "elasticity of a fluid" in ways compatible with the broad definition provided in the Introduction above. Solids include complex crystalline materials with sometimes complicated behavior. By contrast, the behavior of compressible fluids, and especially gases, demonstrates the essence of elastic energy with negligible complication. The simple thermodynamic formula: where dU is an infinitesimal change in recoverable internal energy U, P is the uniform pressure (a force per unit area) applied to the material sample of interest, and dV is the infinitesimal change in volume that corresponds to the change in internal energy. The minus sign appears because dV is negative under compression by a positive applied pressure which also increases the internal energy. Upon reversal, the work that is done by a system is the negative of the change in its internal energy corresponding to the positive dV of an increasing volume. In other words, the system loses stored internal energy when doing work on its surroundings. Pressure is stress and volumetric change corresponds to changing the relative spacing of points within the material. The stress-strain-internal energy relationship of the foregoing formula is repeated in formulations for elastic energy of solid materials with complicated crystalline structure. (en)
- Energia potentzial elastikoa gorputz elastiko batek bere oreka-posiziotik ateratzen denean duen energia potentziala da. Energia potentzial elastikoa objektuak konprimatzen edo luzatzen direnean ematen da, edo edozein modutan deformatzen badira. batez ere gorputz eta material solidoen deformazio mekaniketan oinarritzen da. Energia potentzial elastikoaren ekuazioa ekilibrio mekanikoaren posizioa ebazteko erabiltzen da. Energia hau potentziala denez, energia zinetikoa bezalako beste energia batean eraldatzen da. Ekuazioa matematikoki horrela adieraz daiteke: (eu)
- En physique, l’énergie potentielle élastique est l'énergie potentielle emmagasinée dans un corps à caractère élastique lorsque ce dernier est compressé ou étiré par rapport à sa position naturelle. Lorsque la force comprimant ou étirant le ressort cesse, le corps tend naturellement à retourner à sa position naturelle et transforme ainsi son énergie potentielle en énergie cinétique. Le caractère élastique d'un objet est remarquable par la capacité de celui-ci à rebondir ou encore à reprendre sa forme après déformation. (fr)
- L’energia elastica è l’energia potenziale alla deformazione elastica di un solido o un fluido (it)
- 弾性エネルギー(だんせいエネルギー、英語: elastic energy)とは、ばねやゴムなどの弾性体の変形に伴うエネルギーである。位置エネルギーの一種である。 (ja)
- Define-se energia potencial elástica a energia potencial de uma corda ou mola que possui elasticidade. Se considerarmos que uma mola apresenta comportamento ideal, ou seja, que toda energia que ela recebe para se deformar ela realmente armazena, podemos escrever que a energia potencial acumulada nessa mola vale: Nessa equação, "x" representa a deformação (contração ou distensão) sofrida pela mola, e "K" chamada de constante elástica, de certa forma, mede a dificuldade para se conseguir deformá-la. Molas frágeis, que se esticam ou comprimem facilmente, possuem pequena constante elástica. Já molas bastante duras, como as usadas na suspensão de um automóvel, possuem essa constante com valor elevado. Pela equação de energia potencial elástica, podemos notar algo que nossa experiência diária confirma: quanto maior a deformação que se quer causar em uma mola e quanto maior a dificuldade para se deformá-la (K), maior a quantidade de energia que deve ser fornecida a ela (e consequentemente maior a quantidade de energia potencial elástica que essa mola armazenará). (pt)
|