About: Ellingham–Horton graph     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatRegularGraphs, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6mNbKkMJqh

In the mathematical field of graph theory, the Ellingham–Horton graphs are two 3-regular graphs on 54 and 78 vertices: the Ellingham–Horton 54-graph and the Ellingham–Horton 78-graph. They are named after Joseph D. Horton and Mark N. Ellingham, their discoverers. These two graphs provide counterexamples to the conjecture of W. T. Tutte that every cubic 3-connected bipartite graph is Hamiltonian. The book thickness of the Ellingham-Horton 54-graph and the Ellingham-Horton 78-graph is 3 and the queue numbers 2.

AttributesValues
rdf:type
rdfs:label
  • Ellingham–Horton graph (en)
  • Граф Эллингема — Хортона (ru)
rdfs:comment
  • In the mathematical field of graph theory, the Ellingham–Horton graphs are two 3-regular graphs on 54 and 78 vertices: the Ellingham–Horton 54-graph and the Ellingham–Horton 78-graph. They are named after Joseph D. Horton and Mark N. Ellingham, their discoverers. These two graphs provide counterexamples to the conjecture of W. T. Tutte that every cubic 3-connected bipartite graph is Hamiltonian. The book thickness of the Ellingham-Horton 54-graph and the Ellingham-Horton 78-graph is 3 and the queue numbers 2. (en)
  • Графы Эллингема — Хортона — два 3-регулярных графа с 54 и 78 вершинами — 54-граф Эллингема — Хортона и 78-граф Эллингема — Хортона. Графы названы именами Джозефа Хортона и Марка Эллингема, которые их открыли. Эти два графа дают контрпримеры гипотезе Уильяма Татта о том, что каждый кубический 3-связный двудольный граф является гамильтоновым. (ru)
name
  • Ellingham–Horton graphs (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ellingham-Horton_54-graph.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ellingham-Horton_54-graph_2COL.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ellingham-Horton_54-graph_3color_edge.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ellingham-Horton_78-graph_2COL.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ellingham-Horton_78-graph_3color_edge.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
namesake
  • Joseph Horton and Mark Ellingham (en)
automorphisms
chromatic index
chromatic number
diameter
edges
girth
image caption
  • The Ellingham–Horton 54-graph. (en)
properties
radius
vertices
has abstract
  • In the mathematical field of graph theory, the Ellingham–Horton graphs are two 3-regular graphs on 54 and 78 vertices: the Ellingham–Horton 54-graph and the Ellingham–Horton 78-graph. They are named after Joseph D. Horton and Mark N. Ellingham, their discoverers. These two graphs provide counterexamples to the conjecture of W. T. Tutte that every cubic 3-connected bipartite graph is Hamiltonian. The book thickness of the Ellingham-Horton 54-graph and the Ellingham-Horton 78-graph is 3 and the queue numbers 2. The first counterexample to the Tutte conjecture was the Horton graph, published by . After the Horton graph, a number of smaller counterexamples to the Tutte conjecture were found. Among them are a 92-vertex graph by , a 78-vertex graph by , and the two Ellingham–Horton graphs. The first Ellingham–Horton graph was published by and is of order 78. At that time it was the smallest known counterexample to the Tutte conjecture. The second Ellingham–Horton graph was published by and is of order 54. In 1989, Georges' graph, the smallest currently-known Non-Hamiltonian 3-connected cubic bipartite graph was discovered, containing 50 vertices. (en)
  • Графы Эллингема — Хортона — два 3-регулярных графа с 54 и 78 вершинами — 54-граф Эллингема — Хортона и 78-граф Эллингема — Хортона. Графы названы именами Джозефа Хортона и Марка Эллингема, которые их открыли. Эти два графа дают контрпримеры гипотезе Уильяма Татта о том, что каждый кубический 3-связный двудольный граф является гамильтоновым. Первым контрпримером гипотезы Татта был граф Хортона, который опубликовали Бодни и Мёрти. После графа Хортона было найдено несколько меньших контрпримеров гипотезе Татта. Среди них находятся 92-вершинный граф Хортона, 78-вершинный граф Овенса и два графа Эллингема — Хортона. Первый граф Эллингема — Хортона опубликовал Эллингем и он имеет порядок 78. В то время граф был наименьшим известным контрпримером гипотезе Татта. Второй граф Эллингема — Хортона опубликовали Эллингем и Хортон и он имеет порядок 54. В 1989 был открыт на настоящее время наименьший негамильтонов 3-связный кубический двудольный граф Жоржа, содержащий 50 вершин. (ru)
book thickness
queue number
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software