About: Flying height     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FFlying_height&invfp=IFP_OFF&sas=SAME_AS_OFF

The flying height or floating height or head gap is the distance between the disk read/write head on a hard disk drive and the platter. The first commercial hard-disk drive, the IBM 305 RAMAC, used forced air to maintain a 0.002 inch (51 μm) between the head and disk. The IBM 1301, introduced in 1961, was the first disk drive in which the head was attached to a "hydrodynamic air bearing slider," which generates its own cushion of pressurized air, allowing the slider and head to fly much closer, 0.00025 inches (6.35 μm) above the disk surface.

AttributesValues
rdf:type
rdfs:label
  • Flying height (en)
rdfs:comment
  • The flying height or floating height or head gap is the distance between the disk read/write head on a hard disk drive and the platter. The first commercial hard-disk drive, the IBM 305 RAMAC, used forced air to maintain a 0.002 inch (51 μm) between the head and disk. The IBM 1301, introduced in 1961, was the first disk drive in which the head was attached to a "hydrodynamic air bearing slider," which generates its own cushion of pressurized air, allowing the slider and head to fly much closer, 0.00025 inches (6.35 μm) above the disk surface. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The flying height or floating height or head gap is the distance between the disk read/write head on a hard disk drive and the platter. The first commercial hard-disk drive, the IBM 305 RAMAC, used forced air to maintain a 0.002 inch (51 μm) between the head and disk. The IBM 1301, introduced in 1961, was the first disk drive in which the head was attached to a "hydrodynamic air bearing slider," which generates its own cushion of pressurized air, allowing the slider and head to fly much closer, 0.00025 inches (6.35 μm) above the disk surface. In 2011, the flying height in modern drives was a few nanometers (about 5 nm). Thus, the head can collide with even an obstruction as thin as a fingerprint or a particle of smoke. Despite the dangers of hard drive failure from such foreign objects, hard drives generally allow for ventilation (albeit through a filter) so that the air pressure within the drive can equalize with the air pressure outside. Because disk drives depend on the head floating on a cushion of air, they are not designed to operate in a vacuum. Regulation of flying height will become even more important in future high-capacity drives. However, hermetically sealed enclosures are beginning to be adopted for hard drives filled with helium gas, with the first products launched in December 2015, starting with capacities of 10 TB. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software