About: Gaussian quadrature     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGaussian_quadrature&invfp=IFP_OFF&sas=SAME_AS_OFF

In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as

AttributesValues
rdfs:label
  • تربيع غاوسي (ar)
  • Quadratura de Gauss (ca)
  • Gaussovo kvadraturní pravidlo (cs)
  • Gauß-Quadratur (de)
  • Cuadratura de Gauss (es)
  • Gaussian quadrature (en)
  • Méthodes de quadrature de Gauss (fr)
  • Quadratura di Gauss (it)
  • ガウス求積 (ja)
  • 가우스 구적법 (ko)
  • Gauss-kwadratuur (nl)
  • Kwadratury Gaussa (pl)
  • Regra de quadratura gaussiana (pt)
  • Метод Гаусса (численное интегрирование) (ru)
  • Квадратури Гауса (uk)
  • 高斯求积 (zh)
rdfs:comment
  • Gaussovo kvadraturní pravidlo je způsob, jakým aproximovat hodnotu integrálu. Jedná se o metodu numerické integrace. V mnoha aplikacích je potřeba vypočítat určitý integrál . Může se ovšem stát, že integrál nelze přesně vypočítat, nebo je jeho výpočet příliš složitý. V takovém případě je tedy vhodné integrál vhodně aproximovat. Jednou z možností je užít kvadraturních vzorců, , mezi něž patří Newtonovy–Cotesovy vzorce a dále také Gaussova kvadraturní formule.Pak platí , kde značí chybu kvadraturní formule. (cs)
  • 가우스 구적법(Gaussian quadrature)은 카를 프리드리히 가우스가 발표한 수치적분 근사법이다. 구간 내부의 점을 이용한다. (ko)
  • Gauss-kwadratuur is een door Carl Friedrich Gauss bedachte en door hem in 1814 gepubliceerde methode (kwadratuur). om een integraal numeriek te benaderen. Gauss-kwadratuur levert van alle numerieke integratiemethodes de hoogste algebraïsche nauwkeurigheid op. De vorm met orthogonale polynomen, zoals die tegenwoordig gehanteerd wordt, stamt uit 1826 en is afkomstig van Carl Jacobi. (nl)
  • In analisi numerica, le formule gaussiane di quadratura sono formule di quadratura numerica di massimo grado di precisione, utilizzate per l'approssimazione di un integrale definito della forma conoscendo valori della funzione nell'intervallo . (it)
  • 高斯求積,又稱高斯數值積分,(英語:Gaussian quadrature),是以德国数学家卡尔·弗里德里希·高斯所命名的一种数值积分中的求积规则。 当我们要求解某个函数的积分,其数值解可以由近似,其中为权重。高斯求积仅当函数可以由在区间上的多项式近似时才能获得准确的近似解,且这种方法并不适用于函数具有奇异点的情况。于是乎,我们可以把函数写作,其中是近似多项式,是已知的权重函数,这样我们就有 。 常用的权重函数有 (高斯切比雪夫) 以及 (高斯埃米特)。 (zh)
  • في التحليل العددي، تعد قاعدة التربيع تقريبًا للتكامل المحدد للدالة، وعادة ما يتم ذكرها مجموعا مرجحا لقيم الدالة عند نقاط محددة داخل مجال التكامل. قاعدة التربيع الغاوسي المتعدد النقاط (n نقطة)، المسماة باسم كارل فريدريش غاوس، هي قاعدة تربيعية أُنشأت لتحقيق نتيجة دقيقة لكثيرة الحدود من الدرجة 2n − 1 أو أقل من خلال اختيار مناسب للعقد xi والأوزان wi لـ i = 1،…، n. طوِّرت الصيغة الحديثة باستخدام كثيرات الحدود المتعامدة من قبل كارل غوستاف جاكوبي سنة 1826.يُؤخذ المجال الأكثر شيوعًا للتكامل لمثل هذه القاعدة على النحو [−1, 1]، لذلك تنص القاعدة على أن: (ar)
  • En càlcul numèric, un mètode de quadratura és una aproximació de la integral definida d'una funció, que normalment es calcula com un de valors de la funció a determinats punts especificats dins del domini d'integració.(Vegeu integració numèrica per trobar més mètodes de quadratura.)Una quadratura de Gauss de n punts (anomenada així en honor de Carl Friedrich Gauss), és un mètode de quadratura construït de forma que dona un resultat exacte per a tots els polinomis de grau 2n − 1, gràcies a una tria adequada dels n punts xi i dels n pesos wi.El domini d'integració d'aquest mètode és, per convenció, [−1, 1], Així el mètode queda establert com (ca)
  • Die Gauß-Quadratur (nach Carl Friedrich Gauß) ist ein Verfahren zur numerischen Integration, das bei gegebenen Freiheitsgraden eine optimale Approximation des Integrals liefert. Bei diesem Verfahren wird die zu integrierende Funktion aufgeteilt in , wobei eine Gewichtsfunktion ist und durch ein spezielles Polynom mit speziell gewählten Auswertungspunkten approximiert wird. Dieses Polynom lässt sich exakt integrieren. Das Verfahren ist also von der Form . (de)
  • In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, …, n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as (en)
  • Dans le domaine mathématique de l'analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d'une intégrale. En général, on remplace le calcul de l'intégrale par une somme pondérée prise en un certain nombre de points du domaine d'intégration (voir calcul numérique d'une intégrale pour plus d'informations). La méthode de quadrature de Gauss, du nom de Carl Friedrich Gauss, est une méthode de quadrature exacte pour un polynôme de degré 2n – 1 avec n points pris sur le domaine d'intégration. (fr)
  • En análisis numérico un método de cuadratura es una aproximación de una integral definida de una función. Una cuadratura de Gauss n, es una cuadratura construida para obtener el resultado exacto al integrar polinomios de grado 2n-1 o menos. Para esto selecciona los puntos de evaluación xi y los pesos wi de forma conveniente. La regla suele expresarse para una integral en el intervalo [−1, 1], y viene dada por la siguiente expresión: (es)
  • ガウス求積(ガウスきゅうせき、英: Gaussian quadrature)またはガウスの数値積分公式とは、カール・フリードリヒ・ガウスに因んで名づけられた数値解析における数値積分法の一種であり、実数のある閉区間(慣例的に [−1, 1] に標準化される)で定義された実数値関数のその閉区間に渡る定積分値を、比較的少ない演算で精度良く求めることができるアルゴリズムである。 n を正の整数とし、f(x) を 任意の多項式関数とする。f(x) の [−1, 1] に渡る定積分値 I を、 の形でなるべく正確に近似する公式を考える。ここで、xi は積分点またはガウス点 (ガウスノード)と呼ばれる [−1, 1] 内の n 個の点であり、wi は重みと呼ばれるn個の実数である。 実は、n 次のルジャンドル多項式の n 個の零点(これらは全て [−1, 1] 内にある)を積分点として選び、wi を適切に選ぶと、f(x) が 2n − 1 次以下の多項式であれば上記の式が厳密に成立することが示せる。この場合、wi は f(x) によらず一意的に定まる。この方法を n 次のガウス・ルジャンドル (Gauss–Legendre) 公式と呼び、通常はガウス求積またはガウスの数値積分公式と言えばこの方法を指している。 (ja)
  • Kwadratury Gaussa – metody całkowania numerycznego polegające na takim wyborze wag i węzłów interpolacji aby wyrażenie najlepiej przybliżało całkę gdzie jest dowolną funkcją określoną na odcinku a jest tzw. funkcją wagową spełniającą warunki 1. * 2. * jest skończona, 3. * Jeżeli jest wielomianem takim, że to jeśli mamy wtedy Określmy iloczyn skalarny z wagą Powiemy, że dwa wielomiany są ortogonalne względem tego iloczynu skalarnego, jeśli Wszystkie kwadratury Gaussa wywodzą się z twierdzenia udowodnionego przez niego: to dla każdego wielomianu stopnia nie większego niż zachodzi (pl)
  • Em análise numérica, uma regra de quadratura é uma aproximação da integral de uma função, geralmente estabelecida como um somatório com pesos dos valores assumidos pela função em pontos específicos dentro do domínio de integração. (Veja integração numérica para mais sobre regras de quadratura.) Pode ser mostrado (veja Press, et al., ou Stoer and Bulirsch) que os pontos usados para avaliar a função são as raízes do -ésimo polinômio de Legendre. (pt)
  • Метод Гаусса — метод численного интегрирования, позволяющий повысить алгебраический порядок точности методов на основе интерполяционных формул путём специального выбора узлов интегрирования без увеличения числа используемых значений подынтегральной функции. Метод Гаусса позволяет достичь максимальной для данного числа узлов интегрирования алгебраической точности. Например, для двух узлов можно получить метод 3-го порядка точности , Для узлы и веса имеют следующие значения: , веса : . (Полином определен на отрезке ). Наиболее известен метод Гаусса по пяти точкам. (ru)
  • В обчислювальній математиці, квадратурні формули використовують для апроксимації визначеного інтеграла заданої функції. Зазвичай являють собою скінченну суму зважених значень функції в певних точках (вузлах) з області інтегрування. (більше про квадратурні формули див. чисельне інтегрування) n-точковою квадратурою Гаусса, або квадратурною формулою Гаусса (на честь Карла Гаусса), називається формула що обчислює точне значення інтегралів для поліномів порядку не вище 2n − 1 з відповідним вибором вузлів xi і ваг wi при i = 1, …, n. (uk)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Comparison_Gaussquad_trapezoidal.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Legendrepolynomials6.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software