About: General purpose analog computer     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGeneral_purpose_analog_computer&invfp=IFP_OFF&sas=SAME_AS_OFF

The general purpose analog computer (GPAC) is a mathematical model of analog computers first introduced in 1941 by Claude Shannon. This model consists of circuits where several basic units are interconnected in order to compute some function. The GPAC can be implemented in practice through the use of mechanical devices or analog electronics. Although analog computers have fallen almost into oblivion due to emergence of the digital computer, the GPAC has recently been studied as a way to provide evidence for the physical Church–Turing thesis. This is because the GPAC is also known to model a large class of dynamical systems defined with ordinary differential equations, which appear frequently in the context of physics. In particular it was shown in 2007 that (a deterministic variant of) the

AttributesValues
rdf:type
rdfs:label
  • General purpose analog computer (en)
rdfs:comment
  • The general purpose analog computer (GPAC) is a mathematical model of analog computers first introduced in 1941 by Claude Shannon. This model consists of circuits where several basic units are interconnected in order to compute some function. The GPAC can be implemented in practice through the use of mechanical devices or analog electronics. Although analog computers have fallen almost into oblivion due to emergence of the digital computer, the GPAC has recently been studied as a way to provide evidence for the physical Church–Turing thesis. This is because the GPAC is also known to model a large class of dynamical systems defined with ordinary differential equations, which appear frequently in the context of physics. In particular it was shown in 2007 that (a deterministic variant of) the (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The general purpose analog computer (GPAC) is a mathematical model of analog computers first introduced in 1941 by Claude Shannon. This model consists of circuits where several basic units are interconnected in order to compute some function. The GPAC can be implemented in practice through the use of mechanical devices or analog electronics. Although analog computers have fallen almost into oblivion due to emergence of the digital computer, the GPAC has recently been studied as a way to provide evidence for the physical Church–Turing thesis. This is because the GPAC is also known to model a large class of dynamical systems defined with ordinary differential equations, which appear frequently in the context of physics. In particular it was shown in 2007 that (a deterministic variant of) the GPAC is equivalent, in computability terms, to Turing machines, thereby proving the physical Church–Turing thesis for the class of systems modelled by the GPAC.This was recently strengthened to polynomial time equivalence. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software