In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform as a linear combination of specified deformation modes.
Attributes | Values |
---|
rdfs:label
| - Generalised beam theory (en)
- Teoria della trave generalizzata (it)
|
rdfs:comment
| - In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform as a linear combination of specified deformation modes. (en)
- La teoria della trave generalizzata (o, in inglese, Generalized beam theory) è una teoria della trave che estende la al caso di travi in parete sottile formate da pareti rettilinee. È stata introdotta da , professore all'Università di Darmstadt. Tramite questa teoria è possibile scrivere la condizione di equilibrio tramite un sistema di equazioni differenziali del quarto ordine, del tipo (it)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform as a linear combination of specified deformation modes. (en)
- La teoria della trave generalizzata (o, in inglese, Generalized beam theory) è una teoria della trave che estende la al caso di travi in parete sottile formate da pareti rettilinee. È stata introdotta da , professore all'Università di Darmstadt. Tramite questa teoria è possibile scrivere la condizione di equilibrio tramite un sistema di equazioni differenziali del quarto ordine, del tipo (it)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage disambiguates
of | |
is foaf:primaryTopic
of | |