rdfs:comment
| - في الجبر التجريدي، مجموعة مولدة لزمرة (بالإنجليزية: Generating set of a group) هي مجموعة جزئية حيث يمكن أن يُعبَّر عن جميع عناصر الزمرة بواسطة تأليف ما لعدد منته من عناصر هذه المجموعة الجزئية بالإضافة إلى معاكساتهن. (ar)
- Generování grupy je matematický pojem z teorie grup. Je speciálním případem obecného pojmu , který popisuje, kdy je nějakou matematickou strukturu možné vytvořit z její vlastní části pomocí jistých operací. (cs)
- En théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (ℤ, +), soit à un groupe additif de classes modulo n (ℤ/nℤ, +) ; on dit que c'est un groupe monogène. Les sous-groupes des groupes commutatifs de type fini sont également de type fini, mais cela n'est pas vrai sans hypothèse de commutativité. (fr)
- Порождающее множество группы (или множество образующих, или система образующих) — это подмножество в , такое, что каждый элемент может быть записан как произведение конечного числа элементов и их обратных. (ru)
- 在抽象代數中,群 的生成集合是子集 S 使得所有 G 的所有元素都可以表達為 S 的元素和它們的逆元中的有限多個元素的乘積。 更一般的說,如果 S 是群 G 的子集,則 所生成的子群 <S> 是包含所有 S 的元素的 G 的最小子群,這意味著它是包含 S 元素的所有子群的交集;等價的說,<S> 是 G 中所有可以用 S 的元素和它們的逆元中的有限乘積表達的元素的子群。 如果 G = <S>,則我們稱 S 生成 G;S 中的元素叫做生成元或群生成元。如果 S 是空集,則 <S> 是平凡群 {e},因為我們認為空乘積是單位元。 在 S 中只有一個單一元素 x 的時候,<S> 通常寫為 <x>。在這種情況下,<x> 是 x 的冪的循環子群,我們稱這個循環群是用 x 生成的。與聲稱一個元素 x 生成一個群等價,還可以聲稱它有階 |G|,或者說 <x> 等于整個群 G。 (zh)
- En teoría de grupos, un conjunto generador de un grupo G es un subconjunto S de G tal que todo elemento de G puede ser expresado como el producto de un número finito de elementos de S y de sus inversos. Más generalmente, si S ⊆ G, <S> es el mínimo subgrupo de G que contiene a S, llamado subgrupo generado por S; equivalentemente, <S> es el subgrupo de G conformado por todos los elementos que pueden ser expresados como el producto de un número finito de elementos de S y de sus inversos. (es)
- In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses. If G = ⟨S⟩, then we say that S generates G, and the elements in S are called generators or group generators. If S is the empty set, then ⟨S⟩ is the trivial group {e}, since we consider the empty product to be the identity. (en)
- Zbiór generatorów grupy – podzbiór, który nie zawiera się w żadnej podgrupie właściwej danej grupy. Równoważnie zbiór generatorów grupy to taki podzbiór grupy, że każdy element grupy można przedstawić jako kombinację (względem operacji grupowej) skończenie wielu elementów tego podzbioru i ich elementów odwrotnych (w notacji addytywnej odpowiada to kombinacji liniowej). Gdy to mówi się, że generuje . Elementy nazywa się wtedy generatorami grupy . Jeśli jest zbiorem pustym, to jest grupą trywialną (pl)
- 抽象代数学において、群の生成系、生成集合 (generating set of a group) は部分集合であって群のすべての元が(群演算のもとで)その部分集合の有限個の元とそれらの逆元の結合として表現できるものである。 言い換えると、S が群 G の部分集合であれば、<S>、S で生成される部分群 (subgroup generated by S)、は S のすべての元を含む G の最小の部分群である、すなわち S のすべての元を含む部分群すべてに渡る共通部分である。同じことだが、 は S の元とそれらの逆元の有限積として書ける G のすべての元からなる部分群である。 G = であれば、S は G を生成する (generate) といい、S の元は生成元 (generator) や群の生成元 (group generator) と呼ばれる。S が空集合であれば、<S> は自明群 {e} である、なぜならば空積を単位元と考えるからである。 (ja)
- In de abstracte algebra is een genererende verzameling of voortbrengende verzameling van een groep een deelverzameling , zodat elk element van kan worden uitgedrukt als het product van een eindig aantal elementen van en hun inversen. Als door wordt gegenereerd, schrijft men . De elementen van worden de generatoren of groepsgeneratoren genoemd. Als de lege verzameling is, dan is de triviale groep , dit omdat we het lege product beschouwen als de identiteit. (nl)
- Na álgebra abstrata, um conjunto gerador de um grupo é um subconjunto que não está contido em nenhum subgrupo próprio do grupo. Equivalentemente, um conjunto gerador de um grupo é um subconjunto, tal que todo elemento do grupo pode ser expresso como a combinação (sob a operação do grupo) de elementos finitos do subconjunto e seus inversos.Generalizando, se S é um subconjunto do grupo G, então <S>, o subgrupo gerado por S, é o menor subgrupo de G contendo todos os elementos de S, significando a inserção em todos os subgrupos contendo os elementos de S; Equivalentemente, é o subgrupo de todos os elementos de G que podem ser expressos como um produto finito de elementos em S e seus inversos. (pt)
- Породжувальна множина групи — це така підмножина S групи G, що кожен елемент групи G можна подати як добуток скінченної кількості елементів із S та обернених до них. Загальніше, якщо S підмножина групи G, тоді <S> — підгрупа породжена S, це найменша підгрупа G яка містить всі елементи S. Еквівалентно, <S> це підгрупа всіх елементів G, які можуть бути представлені як добутки скінченної кількості елементів з S та обернених до них. Коли S містить тільки один елемент x, зазвичай пишуть <x> = G. В такому випадку — це циклічна підгрупа степенів x в G. (uk)
|