About: Gibbons–Hawking–York boundary term     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGibbons%E2%80%93Hawking%E2%80%93York_boundary_term&invfp=IFP_OFF&sas=SAME_AS_OFF

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary. The Einstein–Hilbert action is the basis for the most elementary variational principle from which the field equations of general relativity can be defined. However, the use of the Einstein–Hilbert action is appropriate only when the underlying spacetime manifold is closed, i.e., a manifold which is both compact and without boundary. In the event that the manifold has a boundary , the action should be supplemented by a boundary term so that the variational principle is well-defined.

AttributesValues
rdfs:label
  • Gibbons–Hawking–York boundary term (en)
  • 기번스-호킹-요크 항 (ko)
rdfs:comment
  • 일반 상대성 이론에서 기번스-호킹-요크 항(영어: Gibbons–Hawking–York term)은 경계가 있는 시공간 위에서 일반 상대성 이론을 정의할 때, 아인슈타인-힐베르트 작용에 추가해야 하는 항이다. (ko)
  • In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary. The Einstein–Hilbert action is the basis for the most elementary variational principle from which the field equations of general relativity can be defined. However, the use of the Einstein–Hilbert action is appropriate only when the underlying spacetime manifold is closed, i.e., a manifold which is both compact and without boundary. In the event that the manifold has a boundary , the action should be supplemented by a boundary term so that the variational principle is well-defined. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary. The Einstein–Hilbert action is the basis for the most elementary variational principle from which the field equations of general relativity can be defined. However, the use of the Einstein–Hilbert action is appropriate only when the underlying spacetime manifold is closed, i.e., a manifold which is both compact and without boundary. In the event that the manifold has a boundary , the action should be supplemented by a boundary term so that the variational principle is well-defined. The necessity of such a boundary term was first realised by York and later refined in a minor way by Gibbons and Hawking. For a manifold that is not closed, the appropriate action is where is the Einstein–Hilbert action, is the Gibbons–Hawking–York boundary term, is the induced metric (see section below on definitions) on the boundary, its determinant, is the trace of the second fundamental form, is equal to where the normal to is spacelike and where the normal to is timelike, and are the coordinates on the boundary. Varying the action with respect to the metric , subject to the condition gives the Einstein equations; the addition of the boundary term means that in performing the variation, the geometry of the boundary encoded in the transverse metric is fixed (see section below). There remains ambiguity in the action up to an arbitrary functional of the induced metric . That a boundary term is needed in the gravitational case is because , the gravitational Lagrangian density, contains second derivatives of the metric tensor. This is a non-typical feature of field theories, which are usually formulated in terms of Lagrangians that involve first derivatives of fields to be varied over only. The GHY term is desirable, as it possesses a number of other key features. When passing to the Hamiltonian formalism, it is necessary to include the GHY term in order to reproduce the correct Arnowitt–Deser–Misner energy (ADM energy). The term is required to ensure the path integral (a la Hawking) for quantum gravity has the correct composition properties. When calculating black hole entropy using the Euclidean semiclassical approach, the entire contribution comes from the GHY term. This term has had more recent applications in loop quantum gravity in calculating transition amplitudes and background-independent scattering amplitudes. In order to determine a finite value for the action, one may have to subtract off a surface term for flat spacetime: where is the extrinsic curvature of the boundary imbedded flat spacetime. As is invariant under variations of , this addition term does not affect the field equations; as such, this is referred to as the non-dynamical term. (en)
  • 일반 상대성 이론에서 기번스-호킹-요크 항(영어: Gibbons–Hawking–York term)은 경계가 있는 시공간 위에서 일반 상대성 이론을 정의할 때, 아인슈타인-힐베르트 작용에 추가해야 하는 항이다. (ko)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software