About: Gottesman–Knill theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGottesman%E2%80%93Knill_theorem&invfp=IFP_OFF&sas=SAME_AS_OFF

In quantum computing, the Gottesman–Knill theorem is a theoretical result by Daniel Gottesman and that states that stabilizer circuits, circuits that only consist of gates from the normalizer of the qubit Pauli group, also called Clifford group, can be perfectly simulated in polynomial time on a probabilistic classical computer. The Clifford group can be generated solely by using CNOT, Hadamard, and phase gate S; and therefore stabilizer circuits can be constructed using only these gates.

AttributesValues
rdfs:label
  • Gottesman–Knill theorem (en)
rdfs:comment
  • In quantum computing, the Gottesman–Knill theorem is a theoretical result by Daniel Gottesman and that states that stabilizer circuits, circuits that only consist of gates from the normalizer of the qubit Pauli group, also called Clifford group, can be perfectly simulated in polynomial time on a probabilistic classical computer. The Clifford group can be generated solely by using CNOT, Hadamard, and phase gate S; and therefore stabilizer circuits can be constructed using only these gates. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In quantum computing, the Gottesman–Knill theorem is a theoretical result by Daniel Gottesman and that states that stabilizer circuits, circuits that only consist of gates from the normalizer of the qubit Pauli group, also called Clifford group, can be perfectly simulated in polynomial time on a probabilistic classical computer. The Clifford group can be generated solely by using CNOT, Hadamard, and phase gate S; and therefore stabilizer circuits can be constructed using only these gates. The reason for the speed up of quantum computers is not yet fully understood. The theorem proves that, for all quantum algorithms with a speed up that relies on entanglement which can be achieved with a CNOT and a Hadamard gate to produce entangled states, this kind of entanglement alone does not give any computing advantage. There exists a more efficient simulation of stabilizer circuits than the construction of the original publication with an implementation. The Gottesman–Knill theorem was published in a single author paper by Gottesman in which he credits Knill with the result through private communication. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 45 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software