About: Green's matrix     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDifferentialEquations, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5Mfv6EpW6a

In mathematics, and in particular ordinary differential equations, a Green's matrix helps to determine a particular solution to a first-order inhomogeneous linear system of ODEs. The concept is named after George Green. For instance, consider where is a vector and is an matrix function of , which is continuous for , where is some interval. Now let be linearly independent solutions to the homogeneous equation and arrange them in columns to form a fundamental matrix: Now is an matrix solution of . Let be the general solution. Now, This implies or where is an arbitrary constant vector.

AttributesValues
rdf:type
rdfs:label
  • Green's matrix (en)
  • Matrice de Green (fr)
rdfs:comment
  • En mathématiques et plus spécialement dans le domaine des équations différentielles, une matrice de Green aide à déterminer une solution particulière d'un système d'équations différentielles linéaires du premier ordre avec second membre.Le concept porte le nom du mathématicien et physicien britannique George Green (1793-1841). (fr)
  • In mathematics, and in particular ordinary differential equations, a Green's matrix helps to determine a particular solution to a first-order inhomogeneous linear system of ODEs. The concept is named after George Green. For instance, consider where is a vector and is an matrix function of , which is continuous for , where is some interval. Now let be linearly independent solutions to the homogeneous equation and arrange them in columns to form a fundamental matrix: Now is an matrix solution of . Let be the general solution. Now, This implies or where is an arbitrary constant vector. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, and in particular ordinary differential equations, a Green's matrix helps to determine a particular solution to a first-order inhomogeneous linear system of ODEs. The concept is named after George Green. For instance, consider where is a vector and is an matrix function of , which is continuous for , where is some interval. Now let be linearly independent solutions to the homogeneous equation and arrange them in columns to form a fundamental matrix: Now is an matrix solution of . This fundamental matrix will provide the homogeneous solution, and if added to a particular solution will give the general solution to the inhomogeneous equation. Let be the general solution. Now, This implies or where is an arbitrary constant vector. Now the general solution is The first term is the homogeneous solution and the second term is the particular solution. Now define the Green's matrix The particular solution can now be written (en)
  • En mathématiques et plus spécialement dans le domaine des équations différentielles, une matrice de Green aide à déterminer une solution particulière d'un système d'équations différentielles linéaires du premier ordre avec second membre.Le concept porte le nom du mathématicien et physicien britannique George Green (1793-1841). (fr)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software