About: Group of rational points on the unit circle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Plant, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGroup_of_rational_points_on_the_unit_circle&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x2 + y2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples. Consider a primitive right triangle, that is, with integer side lengths a, b, c, with c the hypotenuse, such that the sides have no common factor larger than 1. Then on the unit circle there exists the rational point (a/c, b/c), which, in the complex plane, is just a/c + ib/c, where i is the imaginary unit. Conversely, if (x, y) is a rational point on the unit circle in the 1st quadrant of the coordinate system (i.e. x > 0, y > 0), then there exists a primitive right triangle with sides xc, yc, c, with c being the least common multiple of the

AttributesValues
rdf:type
rdfs:label
  • Gruppe der rationalen Punkte auf dem Einheitskreis (de)
  • Group of rational points on the unit circle (en)
rdfs:comment
  • Die Gruppe der rationalen Punkte auf dem Einheitskreis besteht aus den Punkten mit rationalen Koordinaten, für die gilt. Die Menge dieser Punkte ist eng mit den primen pythagoräischen Tripeln verwandt. Ist ein primitives rechtwinkliges Dreieck mit ganzzahligen teilerfremden Seitenlängen gegeben, wobei die Hypotenuse ist, dann gibt es auf dem Einheitskreis den rationalen Punkt . Ist umgekehrt ein rationaler Punkt auf dem Einheitskreis, dann gibt es ein primitives rechtwinkliges Dreieck mit den Seiten , wobei das kleinste gemeinsame Vielfache der Nenner von und ist. (de)
  • In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x2 + y2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples. Consider a primitive right triangle, that is, with integer side lengths a, b, c, with c the hypotenuse, such that the sides have no common factor larger than 1. Then on the unit circle there exists the rational point (a/c, b/c), which, in the complex plane, is just a/c + ib/c, where i is the imaginary unit. Conversely, if (x, y) is a rational point on the unit circle in the 1st quadrant of the coordinate system (i.e. x > 0, y > 0), then there exists a primitive right triangle with sides xc, yc, c, with c being the least common multiple of the (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Pythagorean_triple_and_rational_point_on_unit_triangle_1.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Die Gruppe der rationalen Punkte auf dem Einheitskreis besteht aus den Punkten mit rationalen Koordinaten, für die gilt. Die Menge dieser Punkte ist eng mit den primen pythagoräischen Tripeln verwandt. Ist ein primitives rechtwinkliges Dreieck mit ganzzahligen teilerfremden Seitenlängen gegeben, wobei die Hypotenuse ist, dann gibt es auf dem Einheitskreis den rationalen Punkt . Ist umgekehrt ein rationaler Punkt auf dem Einheitskreis, dann gibt es ein primitives rechtwinkliges Dreieck mit den Seiten , wobei das kleinste gemeinsame Vielfache der Nenner von und ist. (de)
  • In mathematics, the rational points on the unit circle are those points (x, y) such that both x and y are rational numbers ("fractions") and satisfy x2 + y2 = 1. The set of such points turns out to be closely related to primitive Pythagorean triples. Consider a primitive right triangle, that is, with integer side lengths a, b, c, with c the hypotenuse, such that the sides have no common factor larger than 1. Then on the unit circle there exists the rational point (a/c, b/c), which, in the complex plane, is just a/c + ib/c, where i is the imaginary unit. Conversely, if (x, y) is a rational point on the unit circle in the 1st quadrant of the coordinate system (i.e. x > 0, y > 0), then there exists a primitive right triangle with sides xc, yc, c, with c being the least common multiple of the denominators of x and y. There is a correspondence between points (a, b) in the x-y plane and points a + ib in the complex plane which is used below. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git145 as of Aug 30 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software