About: H3T45P     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5GQpH59PRd

H3T45P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 45th threonine residue of the histone H3 protein. During apoptosis, H3T45 phosphorylation is required for structural changes inside the nucleosome that enable DNA nicking and/or fragmentation. Phosphorylation of the nucleosome DNA entry-exit region improves access to DNA binding complexes, and the combination of phosphorylation and acetylation has the ability to alter DNA accessibility to transcription regulatory complexes dramatically.

AttributesValues
rdfs:label
  • H3T45P (en)
rdfs:comment
  • H3T45P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 45th threonine residue of the histone H3 protein. During apoptosis, H3T45 phosphorylation is required for structural changes inside the nucleosome that enable DNA nicking and/or fragmentation. Phosphorylation of the nucleosome DNA entry-exit region improves access to DNA binding complexes, and the combination of phosphorylation and acetylation has the ability to alter DNA accessibility to transcription regulatory complexes dramatically. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • H3T45P is an epigenetic modification to the DNA packaging protein histone H3. It is a mark that indicates the phosphorylation the 45th threonine residue of the histone H3 protein. During apoptosis, H3T45 phosphorylation is required for structural changes inside the nucleosome that enable DNA nicking and/or fragmentation. The H3T45 residue appears to be a nucleosome gatekeeper, regulating DNA accessibility at transcription target sites. This could be a new regulatory network that coordinates gene expression to enable the necessary cell expansion that comes with cell proliferation. It could be a particularly distinctive target for cancer therapies and as a biomarker. Phosphorylation of the nucleosome DNA entry-exit region improves access to DNA binding complexes, and the combination of phosphorylation and acetylation has the ability to alter DNA accessibility to transcription regulatory complexes dramatically. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software