In mathematics, the Hodge index theorem for an algebraic surface V determines the signature of the intersection pairing on the algebraic curves C on V. It says, roughly speaking, that the space spanned by such curves (up to linear equivalence) has a one-dimensional subspace on which it is positive definite (not uniquely determined), and decomposes as a direct sum of some such one-dimensional subspace, and a complementary subspace on which it is negative definite.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Indexsatz von Hodge (de)
- Hodge index theorem (en)
|
rdfs:comment
| - Der Indexsatz von Hodge ist ein Lehrsatz aus dem mathematischen Gebiet der algebraischen Geometrie. Er berechnet die Signatur algebraischer Flächen. Er besagt: Sei ein ampler Divisor auf einer algebraischen Fläche . Dann ist die Schnittform negativ definit auf . Dies gilt insbesondere, wenn der Divisor des einer Einbettung ist. In diesem Fall ist , womit sich der Trägheitsindex der Schnittform als ergibt, wobei die Dimension des Vektorraums modulo (äquivalent der Rang der ) ist. (de)
- In mathematics, the Hodge index theorem for an algebraic surface V determines the signature of the intersection pairing on the algebraic curves C on V. It says, roughly speaking, that the space spanned by such curves (up to linear equivalence) has a one-dimensional subspace on which it is positive definite (not uniquely determined), and decomposes as a direct sum of some such one-dimensional subspace, and a complementary subspace on which it is negative definite. (en)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Der Indexsatz von Hodge ist ein Lehrsatz aus dem mathematischen Gebiet der algebraischen Geometrie. Er berechnet die Signatur algebraischer Flächen. Er besagt: Sei ein ampler Divisor auf einer algebraischen Fläche . Dann ist die Schnittform negativ definit auf . Dies gilt insbesondere, wenn der Divisor des einer Einbettung ist. In diesem Fall ist , womit sich der Trägheitsindex der Schnittform als ergibt, wobei die Dimension des Vektorraums modulo (äquivalent der Rang der ) ist. Der Satz wurde von Hodge als Anwendung der topologischen Methoden Lefschetzs in der komplexen algebraischen Geometrie bewiesen. In Lehrbüchern wird er heute meist als Konsequenz des Satzes von Riemann-Roch oder auch aus den hergeleitet. Er gilt allgemeiner über beliebigen algebraisch abgeschlossenen Körpern. (de)
- In mathematics, the Hodge index theorem for an algebraic surface V determines the signature of the intersection pairing on the algebraic curves C on V. It says, roughly speaking, that the space spanned by such curves (up to linear equivalence) has a one-dimensional subspace on which it is positive definite (not uniquely determined), and decomposes as a direct sum of some such one-dimensional subspace, and a complementary subspace on which it is negative definite. In a more formal statement, specify that V is a non-singular projective surface, and let H be the divisor class on V of a hyperplane section of V in a given projective embedding. Then the intersection where d is the degree of V (in that embedding). Let D be the vector space of rational divisor classes on V, up to algebraic equivalence. The dimension of D is finite and is usually denoted by ρ(V). The Hodge index theorem says that the subspace spanned by H in D has a complementary subspace on which the intersection pairing is negative definite. Therefore, the signature (often also called index) is (1,ρ(V)-1). The abelian group of divisor classes up to algebraic equivalence is now called the Néron-Severi group; it is known to be a finitely-generated abelian group, and the result is about its tensor product with the rational number field. Therefore, ρ(V) is equally the rank of the Néron-Severi group (which can have a non-trivial torsion subgroup, on occasion). This result was proved in the 1930s by W. V. D. Hodge, for varieties over the complex numbers, after it had been a conjecture for some time of the Italian school of algebraic geometry (in particular, Francesco Severi, who in this case showed that ρ < ∞). Hodge's methods were the topological ones brought in by Lefschetz. The result holds over general (algebraically closed) fields. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |