About: Hyperplane section     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:RoadJunction, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FHyperplane_section&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, a hyperplane section of a subset X of projective space Pn is the intersection of X with some hyperplane H. In other words, we look at the subset XH of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace. Here L or H can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication.

AttributesValues
rdf:type
rdfs:label
  • Hyperplane section (en)
rdfs:comment
  • In mathematics, a hyperplane section of a subset X of projective space Pn is the intersection of X with some hyperplane H. In other words, we look at the subset XH of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace. Here L or H can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a hyperplane section of a subset X of projective space Pn is the intersection of X with some hyperplane H. In other words, we look at the subset XH of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace. Here L or H can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication. From a geometrical point of view, the most interesting case is when X is an algebraic subvariety; for more general cases, in mathematical analysis, some analogue of the Radon transform applies. In algebraic geometry, assuming therefore that X is V, a subvariety not lying completely in any H, the hyperplane sections are algebraic sets with irreducible components all of dimension dim(V) − 1. What more can be said is addressed by a collection of results known collectively as Bertini's theorem. The topology of hyperplane sections is studied in the topic of the Lefschetz hyperplane theorem and its refinements. Because the dimension drops by one in taking hyperplane sections, the process is potentially an inductive method for understanding varieties of higher dimension. A basic tool for that is the Lefschetz pencil. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software