About: Immanuel Bomze     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FImmanuel_Bomze&invfp=IFP_OFF&sas=SAME_AS_OFF

Immanuel Bomze is an Austrian mathematician. In his Ph.D. thesis, he completely classified all (more than 100 topologically different) possible flows of the generalized Lotka–Volterra dynamics (generalized Lotka–Volterra equation) on the plane, employing equivalence of this dynamics to the 3-type replicator equation.

AttributesValues
rdf:type
rdfs:label
  • Immanuel Bomze (en)
rdfs:comment
  • Immanuel Bomze is an Austrian mathematician. In his Ph.D. thesis, he completely classified all (more than 100 topologically different) possible flows of the generalized Lotka–Volterra dynamics (generalized Lotka–Volterra equation) on the plane, employing equivalence of this dynamics to the 3-type replicator equation. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Immanuel Bomze is an Austrian mathematician. In his Ph.D. thesis, he completely classified all (more than 100 topologically different) possible flows of the generalized Lotka–Volterra dynamics (generalized Lotka–Volterra equation) on the plane, employing equivalence of this dynamics to the 3-type replicator equation. In “Non-cooperative two-person games in biology: a classification” (1986) and his book jointly authored with B. M. Pötscher (Game theoretic foundations of evolutionary stability, Springer 1989), he popularized the field of evolutionary game theory which at that time received most attention within Theoretical Biology, among researchers in Economics and Social Sciences. Around the turn of the millennium, he coined, together with his co-authors, the now widely used terms "Standard Quadratic Optimization" and "Copositive Optimization" or "Copositive Programming". While the further deals with the simplest problem class in non-linear optimization with an NP-hard complexity, copositive optimization allows a conic reformulation of these hard problems as a linear optimization problem over a closed convex cone of symmetric matrices, a so-called conic optimization problem. In this type of problems, the full extent of complexity is put into the cone constraint, while structural constraints and also the objective function are linear and therefore easy to handle. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is editor of
is editor of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software