About: Invertible module     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInvertible_module&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, particularly commutative algebra, an invertible module is intuitively a module that has an inverse with respect to the tensor product. Invertible modules form the foundation for the definition of invertible sheaves in algebraic geometry. Formally, a finitely generated module M over a ring R is said to be invertible if it is locally a free module of rank 1. In other words, for all primes P of R. Now, if M is an invertible R-module, then its dual M* = Hom(M,R) is its inverse with respect to the tensor product, i.e. .

AttributesValues
rdf:type
rdfs:label
  • Invertible module (en)
rdfs:comment
  • In mathematics, particularly commutative algebra, an invertible module is intuitively a module that has an inverse with respect to the tensor product. Invertible modules form the foundation for the definition of invertible sheaves in algebraic geometry. Formally, a finitely generated module M over a ring R is said to be invertible if it is locally a free module of rank 1. In other words, for all primes P of R. Now, if M is an invertible R-module, then its dual M* = Hom(M,R) is its inverse with respect to the tensor product, i.e. . (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, particularly commutative algebra, an invertible module is intuitively a module that has an inverse with respect to the tensor product. Invertible modules form the foundation for the definition of invertible sheaves in algebraic geometry. Formally, a finitely generated module M over a ring R is said to be invertible if it is locally a free module of rank 1. In other words, for all primes P of R. Now, if M is an invertible R-module, then its dual M* = Hom(M,R) is its inverse with respect to the tensor product, i.e. . The theory of invertible modules is closely related to the theory of codimension on varieties including the theory of divisors. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software