About: Ionization cooling     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Election, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FIonization_cooling&invfp=IFP_OFF&sas=SAME_AS_OFF

In accelerator physics, ionization cooling is a physical process for reducing the beam emittance of a charged particle beam ("cooling") by passing the particles through some material, reducing their momentum as they ionize atomic electrons in the material.Thus the normalised beam emittance is reduced. By re-accelerating the beam, for example in an RF cavity, the longitudinal momentum may be restored without replacing transverse momentum. Thus overall the angular spread and hence the geometric emittance in the beam will be reduced.

AttributesValues
rdf:type
rdfs:label
  • Ionization cooling (en)
rdfs:comment
  • In accelerator physics, ionization cooling is a physical process for reducing the beam emittance of a charged particle beam ("cooling") by passing the particles through some material, reducing their momentum as they ionize atomic electrons in the material.Thus the normalised beam emittance is reduced. By re-accelerating the beam, for example in an RF cavity, the longitudinal momentum may be restored without replacing transverse momentum. Thus overall the angular spread and hence the geometric emittance in the beam will be reduced. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In accelerator physics, ionization cooling is a physical process for reducing the beam emittance of a charged particle beam ("cooling") by passing the particles through some material, reducing their momentum as they ionize atomic electrons in the material.Thus the normalised beam emittance is reduced. By re-accelerating the beam, for example in an RF cavity, the longitudinal momentum may be restored without replacing transverse momentum. Thus overall the angular spread and hence the geometric emittance in the beam will be reduced. Ionization cooling can be spoiled by stochastic physical processes. Multiple Coulomb scattering of muons as well as nuclear scattering of protons and ions can reduce the cooling or even lead to net heating transverse to the direction of beam motion. In addition, energy straggling can cause heating parallel to the direction of beam motion. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software