About: Jones–Dole equation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FJones%E2%80%93Dole_equation&invfp=IFP_OFF&sas=SAME_AS_OFF

The Jones–Dole equation, or Jones–Dole expression, is an empirical expression that describes the relationship between the viscosity of a solution and the concentration of solute within the solution (at a fixed temperature and pressure). The Jones–Dole equation is written as where

AttributesValues
rdfs:label
  • Jones–Dole equation (en)
rdfs:comment
  • The Jones–Dole equation, or Jones–Dole expression, is an empirical expression that describes the relationship between the viscosity of a solution and the concentration of solute within the solution (at a fixed temperature and pressure). The Jones–Dole equation is written as where (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The Jones–Dole equation, or Jones–Dole expression, is an empirical expression that describes the relationship between the viscosity of a solution and the concentration of solute within the solution (at a fixed temperature and pressure). The Jones–Dole equation is written as where η is the viscosity of the solution (at a fixed temperature and pressure),η0 is the viscosity of the solvent at the same temperature and pressure,A is a coefficient that describes the impact of charge–charge interactions on the viscosity of a solution (it is usually positive) and can be calculated from Debye–Hückel theory,B is a coefficient that characterises the solute–solvent interactions at a defined temperature and pressure,C is the solute concentration. The Jones–Dole B coefficient is often used to classify ions as either structure-makers (kosmotropes) or structure-breakers (chaotropes) according to their supposed strengthening or weakening of the hydrogen-bond network of water. The Jones–Dole expression works well up to about 1 M, but at higher concentrations breaks down, as the viscosity of all solutions increase rapidly at high concentrations. The large increase in viscosity as a function of solute concentration seen in all solutions above about 1 M is the effect of a jamming transition at a high concentration. As a result, the viscosity increases exponentially as a function of concentration and then diverges at a critical concentration. This has been referred to as the "Mayonnaise effect", as the viscosity of mayonnaise (essentially a solution of oil in water) is extremely high because of the jamming of micrometer-scale droplets. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 62 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software