About: K-graph C*-algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FK-graph_C%2A-algebra&invfp=IFP_OFF&sas=SAME_AS_OFF

For C*-algebra in mathematics, a k-graph (or higher-rank graph, graph of rank k) is a countable category with domain and codomain maps and , together with a functor which satisfies the following factorisation property: if then there are unique with such that .

AttributesValues
rdfs:label
  • K-graph C*-algebra (en)
rdfs:comment
  • For C*-algebra in mathematics, a k-graph (or higher-rank graph, graph of rank k) is a countable category with domain and codomain maps and , together with a functor which satisfies the following factorisation property: if then there are unique with such that . (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • For C*-algebra in mathematics, a k-graph (or higher-rank graph, graph of rank k) is a countable category with domain and codomain maps and , together with a functor which satisfies the following factorisation property: if then there are unique with such that . Aside from its category theory definition, one can think of k-graphs as a higher-dimensional analogue of directed graphs (digraphs). k- here signifies the number of "colors" of edges that are involved in the graph. If k=1, a k-graph is just an ordinary directed graph.If k=2, there are two different colors of edges involved in the graph and additional factorization rules of 2-color equivalent classes should be defined. The factorization rule on k-graph skeleton is what distinguishes one k-graph defined on the same skeleton from another k-graph. k can be any natural number greater than or equal to 1. The reason k-graphs were first introduced by Kumjian, Pask et al. was to create examples of C*-algebras from them. k-graphs consist of two parts: skeleton and factorization rules defined on the given skeleton. Once k-graph is well-defined, one can define functions called 2-cocycles on each graph, and C*-algebras can be built from k-graphs and 2-cocycles. k-graphs are relatively simple to understand from a graph theory perspective, yet just complicated enough to reveal different interesting properties at the C*-algebra level. The properties such as homotopy and cohomology on the 2-cocycles defined on k-graphs have implications to C*-algebra and K-theory research efforts. No other known use of k-graphs exist to this day; k-graphs are studied solely for the purpose of creating C*-algebras from them. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software