About: Lagrangian system     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDynamicalSystems, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/9WTQm2Tp8d

In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis ℝ. In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.

AttributesValues
rdf:type
rdfs:label
  • Sistema lagrangiano (es)
  • Lagrangian system (en)
  • Лагранжева система (ru)
rdfs:comment
  • En matemáticas, un sistema lagrangiano​ es un par (Y, L), que consiste en un fibrado suave Y → X y una densidad lagrangiana L, lo que hace que el operador diferencial de Euler-Lagrange actúe en secciones de Y → X. En mecánica clásica, muchos sistemas dinámicos son sistemas lagrangianos. El espacio de configuración de dicho sistema lagrangiano es un haz de fibras Q → ℝ en el eje de tiempo sobre ℝ. En particular, Q = ℝ × M si un marco de referencia es fijo. En teoría clásica de campos, todos los sistemas de campo lo son de Lagrange. (es)
  • In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis ℝ. In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones. (en)
  • В математике лагранжевой системой называется пара гладкого расслоения и лагранжевой плотности , которая определяет дифференциальный оператор Эйлера — Лагранжа, действующий на сечения расслоения . В классической механике многие динамические системы являются лагранжевыми. Конфигурационным пространством такой лагранжевой системы служит расслоение над осью времени (в частности, , если система отсчёта фиксирована). В классической теории поля, все полевые системы являются лагранжевыми. где Ядро оператора Эйлера — Лагранжа задаёт уравнение Эйлера — Лагранжа . где (ru)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En matemáticas, un sistema lagrangiano​ es un par (Y, L), que consiste en un fibrado suave Y → X y una densidad lagrangiana L, lo que hace que el operador diferencial de Euler-Lagrange actúe en secciones de Y → X. En mecánica clásica, muchos sistemas dinámicos son sistemas lagrangianos. El espacio de configuración de dicho sistema lagrangiano es un haz de fibras Q → ℝ en el eje de tiempo sobre ℝ. En particular, Q = ℝ × M si un marco de referencia es fijo. En teoría clásica de campos, todos los sistemas de campo lo son de Lagrange. (es)
  • In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis ℝ. In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones. (en)
  • В математике лагранжевой системой называется пара гладкого расслоения и лагранжевой плотности , которая определяет дифференциальный оператор Эйлера — Лагранжа, действующий на сечения расслоения . В классической механике многие динамические системы являются лагранжевыми. Конфигурационным пространством такой лагранжевой системы служит расслоение над осью времени (в частности, , если система отсчёта фиксирована). В классической теории поля, все полевые системы являются лагранжевыми. Лагранжева плотность (или просто лагранжиан)порядка определяется как -форма, dim, на многообразии струй порядка сечений расслоения . Лагранжиан может быть введён как элемент вариационного бикомплекса дифференциальной градуированной алгебры внешних форм на многообразиях струй расслоения . Оператор кограницы этого бикомплекса содержит вариационный оператор , который, действуя на , определяет ассоциированный оператор Эйлера — Лагранжа . Относительно координат на расслоении и соответствующих координат на многообразии струй лагранжиан и оператор Эйлера — Лагранжа имеют вид: где обозначают полные производные. Например, лагранжиан первого порядка и оператор Эйлера — Лагранжа второго порядка принимают форму Ядро оператора Эйлера — Лагранжа задаёт уравнение Эйлера — Лагранжа . Когомологии вариационного бикомплекса определяют так называемую вариационную формулу где - полный дифференциал и - эквивалент Лепажа лагранжиана . Первая и вторая теоремы Нётер являются следствиями этой вариационной формулы. Будучи обобщённым на градуированные многообразия, вариационный бикомплекс описывает градуированные лагранжевы системы четных и нечётных переменных. В другом варианте лагранжиан, оператор Эйлера — Лагранжа и уравнения Эйлера — Лагранжа вводятся в рамках вариационного исчисления. (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 42 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software