rdfs:comment
| - في حساب المثلثات، قانون الجيب هو قانون أو معادلة تربط بين أطوال أضلاع المثلث بجيوب زواياه الداخلية طبقاً للعلاقة: حيث c ،b ،a هي أطوال أضلاع المثلث، وC ،B ،A، هي الزوايا المقابلة لهذه الأضلاع على الترتيب. من المفيد أحياناً كتابة قانون الجيب بصورة مقلوبة: (ar)
- Στην γεωμετρία, ο νόμος των ημιτόνων, είναι μία σχέση που ισχύει σε οποιοδήποτε τρίγωνο και η οποία συνδέει τα μήκη των πλευρών ενός τριγώνου με τα ημίτονα των γωνιών του. Πιο συγκεκριμένα σε κάθε τρίγωνο , ισχύει ότι όπου , , είναι τα μήκη των πλευρών του, , , οι γωνίες του, και η ακτίνα του του τριγώνου. Δηλαδή σε ένα τυχόν τρίγωνο ο λόγος της πλευράς προς το ημίτονο της γωνίας που βλέπει προς την πλευρά είναι σταθερός και ίσος με την διάμετρο του περιγεγραμμένου κύκλου, δηλαδή με . (el)
- En trigonometrio, la leĝo de sinusoj aŭ sinusa formulo aŭ sinusa regulo aŭ sinusa teoremo estas interrilato inter longoj de lateroj kaj sinusoj de anguloj ĉe triangulo sur eŭklida ebeno. Se longoj de lateroj de la triangulo estas a, b kaj c kaj la anguloj kontraŭaj al tiuj lateroj estas A, B kaj C, tiam la leĝo de sinusoj estas: kie R estas la radiuso de la ĉirkaŭskribita cirklo. Plu kie S estas la areo de la triangulo kaj s estas la duonperimetro La dua egaleco pli supre estas esence formulo de Heron. (eo)
- In der ebenen und sphärischen Trigonometrie stellt der Sinussatz eine Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den gegenüberliegenden Seiten her. (de)
- Trigonometrian, sinuaren teorema hiruki, trigono edo triangelu bateko angeluen eta haien aurkako aldeen ezaugarri batzuen arteko arrazoia konstantea dela ezartzen duen teorema da. Bereziki, triangelu baten ebazpenean erabiltzen da, bi alde eta horietako baten aurkako angelua ezagunak direnean edota bi angelu eta aurkako alde bat ezagutzen direnean. (eu)
- En trigonometría plana, el teorema del seno o teorema de los senos o también conocido como ley de los senos es una proporción entre las longitudes de los lados de un triángulo y los senos de sus correspondientes ángulos opuestos. Usualmente se presenta de la siguiente forma: (es)
- En trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du XIe siècle et, pour la forme plane, par Nasir al-Din al-Tusi au début du XIIIe siècle. (fr)
- 正弦定理(せいげんていり、英:law of sines)とは三角形の内角の正弦(サイン)とその対辺の長さの関係を示したものである。正弦法則ともいう。多くの場合、平面三角法における定理を指すが、球面三角法などでも類似の定理が知られており、同じように正弦定理と呼ばれている。 (ja)
- 기하학에서 사인 법칙(-法則, 영어: law of sines) 혹은 라미의 정리는 삼각형의 변의 길이와 각의 사인 사이의 관계를 나타내는 정리이다. 이에 따라 삼각형의 두 각의 크기와 한 변의 길이를 알 때 남은 두 변의 길이를 구할 수 있다. (ko)
- Twierdzenie sinusów lub wzór sinusów – twierdzenie dotyczące zależności między kątami i bokami w trójkącie. (pl)
- Em trigonometria, a lei dos senos é uma relação matemática de proporção sobre a medida de triângulos arbitrários em um plano. Em um triângulo qualquer, inscrito em uma circunferência de raio , de lados , e , que medem respectivamente , e , com ângulos internos , e vale a seguinte relação: (pt)
- Sinussatsen är inom trigonometrin en sats om trianglar. För en triangel med sidlängderna a, b och c, och med de motstående vinklarna betecknade med α, β och γ enligt så gäller enligt sinussatsen att (sv)
- Теоре́ма си́нусов — теорема, устанавливающая зависимость между длинами сторон треугольника и величиной противолежащих им углов.Существуют два варианта теоремы; обычная теорема синусов: и расширенная теорема синусов: (ru)
- 正弦定理是三角学中的一个定理。它指出:对于任意,、、分别为、、的对边,为的外接圆半径,则有 (zh)
- En trigonometria, el teorema del sinus és una afirmació respecte d'un triangle qualsevol en el pla, vàlida també per un triangle esfèric i amb una formulació equivalent a la geometria hiperbòlica. Si els costats d'un triangle són a, b i c i els angles oposats a aquests costats són A, B i C, llavors el teorema del sinus afirma: Es pot demostrar que on A és l'àrea del triangle i s és el La segona igualtat de més amunt és en essència la fórmula d'Heró. (ca)
- V trigonometrii je sinová věta důležité tvrzení o rovinných trojúhelnících. Nejčastěji zní takto: Pro každý trojúhelník ABC s vnitřními úhly α, β, γ a stranami a, b, c platí: . Neboli: „Poměr všech délek stran a hodnot sinů jim protilehlých úhlů je v trojúhelníku konstantní.“ Zjednodušení sinové věty, aplikované na pravoúhlý trojúhelník je: z čehož plyne: Větu lze ovšem zformulovat také takto: , či takto: , nebo takto: , s významem: „Poměr délek stran trojúhelníku se rovná poměru sinů velikostí jim protilehlých úhlů.“ Věta se používá zejména v následujících dvou případech: (cs)
- In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals;The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data (called the ambiguous case) and the techni (en)
- Dalam trigonometri, aturan sinus, rumus sinus, atau hukum sinus adalah sebuah persamaan yang memperbandingan panjang sisi-sisi segitiga terhadap sinus sudut-sudutnya. Aturan ini menyatakan bahwa dengan a, b, dan c menyatakan panjang-panjang sisi dari segitiga, dan α, β, dan γ adalah besar sudut-sudut yang menghadap sisi-sisi tersebut (lihat gambar sebagai ilustrasi), sedangkan R adalah radius dari lingkaran luar segitiga. Jika radius lingkaran tidak digunakan, aturan sinus terkadang dinyatakan dalam bentukAturan sinus berguna untuk menghitung sisi yang belum diketahui dari suatu segitiga apabila besar dua sudut dan panjang satu sisinya diketahui. Ini adalah masalah yang umum terjadi ketika melakukan triangulasi. Rumus ini juga dapat digunakan bila diketahui panjang dua sisi dan besar sudut (in)
- In trigonometria, il teorema dei seni (noto anche come teorema di Eulero) esprime una relazione di proporzionalità diretta fra le lunghezze dei lati di un triangolo e i seni dei rispettivi angoli opposti. Si consideri il triangolo generico ABC rappresentato nella figura a lato, in cui gli angoli sono indicati da lettere greche minuscole e i lati opposti agli angoli dalle corrispondenti lettere latine minuscole. Vale quindi dove R è il raggio del cerchio circoscritto al triangolo ABC e è l'area del triangolo ricavata dal semiperimetro p grazie alla formula di Erone. . (it)
- De sinusregel is een stelling uit de goniometrie die stelt dat in een driehoek de verhouding tussen de lengte van een zijde en de sinus van de overstaande hoek voor elk van de hoeken gelijk is aan het dubbele van de straal r van de omgeschreven cirkel. De regel werd voor het eerst beschreven door de middeleeuwse Perzische wiskundige Nasir al-Din al-Toesi. Voor een driehoek met zijden a, b en c, en respectievelijk de overstaande hoeken α , β en γ geldt: De sinusregel is ook te schrijven als: Gebruik de sinusregel: Bewijs Vrijmaken van hc geeft en , gelijkstellen van hc geeft en omwerken geeft . (nl)
- Теорема синусів — наступне тригонометричне твердження про властивості кутів та сторін довільного трикутника: нехай a, b і c є сторонами трикутника, а A, B і C — кути протилежні вказаним сторонам, тоді Ця формула корисна при обчисленні решти двох сторін трикутника, якщо відомі сторона та два прилеглі кути; типова проблема, що постає при тріангуляції. Також, якщо відомі дві сторони та один із кутів, що не утворюється цими сторонами, зазначена формула дає два можливих значення для внутрішнього кута. В цьому випадку, часто лишень одне значення задовольняє умові, що сума трьох кутів трикутника дорівнює 180°; інакше отримаємо два можливих розв'язки. (uk)
|