About: Leftover hash lemma     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatProbabilityTheorems, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLeftover_hash_lemma&invfp=IFP_OFF&sas=SAME_AS_OFF

The leftover hash lemma is a lemma in cryptography first stated by Russell Impagliazzo, Leonid Levin, and Michael Luby. Imagine that you have a secret key X that has n uniform random bits, and you would like to use this secret key to encrypt a message. Unfortunately, you were a bit careless with the key, and know that an adversary was able to learn the values of some t < n bits of that key, but you do not know which t bits. Can you still use your key, or do you have to throw it away and choose a new key? The leftover hash lemma tells us that we can produce a key of about n − t bits, over which the adversary has almost no knowledge. Since the adversary knows all but n − t bits, this is almost optimal.

AttributesValues
rdf:type
rdfs:label
  • Leftover hash lemma (en)
rdfs:comment
  • The leftover hash lemma is a lemma in cryptography first stated by Russell Impagliazzo, Leonid Levin, and Michael Luby. Imagine that you have a secret key X that has n uniform random bits, and you would like to use this secret key to encrypt a message. Unfortunately, you were a bit careless with the key, and know that an adversary was able to learn the values of some t < n bits of that key, but you do not know which t bits. Can you still use your key, or do you have to throw it away and choose a new key? The leftover hash lemma tells us that we can produce a key of about n − t bits, over which the adversary has almost no knowledge. Since the adversary knows all but n − t bits, this is almost optimal. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The leftover hash lemma is a lemma in cryptography first stated by Russell Impagliazzo, Leonid Levin, and Michael Luby. Imagine that you have a secret key X that has n uniform random bits, and you would like to use this secret key to encrypt a message. Unfortunately, you were a bit careless with the key, and know that an adversary was able to learn the values of some t < n bits of that key, but you do not know which t bits. Can you still use your key, or do you have to throw it away and choose a new key? The leftover hash lemma tells us that we can produce a key of about n − t bits, over which the adversary has almost no knowledge. Since the adversary knows all but n − t bits, this is almost optimal. More precisely, the leftover hash lemma tells us that we can extract a length asymptotic to (the min-entropy of X) bits from a random variable X that are almost uniformly distributed. In other words, an adversary who has some partial knowledge about X, will have almost no knowledge about the extracted value. That is why this is also called privacy amplification (see privacy amplification section in the article Quantum key distribution). Randomness extractors achieve the same result, but use (normally) less randomness. Let X be a random variable over and let . Let be a 2-universal hash function. If then for S uniform over and independent of X, we have: where U is uniform over and independent of S. is the min-entropy of X, which measures the amount of randomness X has. The min-entropy is always less than or equal to the Shannon entropy. Note that is the probability of correctly guessing X. (The best guess is to guess the most probable value.) Therefore, the min-entropy measures how difficult it is to guess X. is a statistical distance between X and Y. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software