About: Leibniz algebra     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLeibniz_algebra&invfp=IFP_OFF&sas=SAME_AS_OFF

In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module L over a commutative ring R with a bilinear product [ _ , _ ] satisfying the Leibniz identity The tensor module, T(V) , of any vector space V can be turned into a Loday algebra such that This is the free Loday algebra over V. A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. It has defining identity:

AttributesValues
rdf:type
rdfs:label
  • Lejbnica alĝebro (eo)
  • Algèbre de Leibniz (fr)
  • Leibniz algebra (en)
  • 라이프니츠 대수 (ko)
  • Leibnizalgebra (sv)
rdfs:comment
  • En algebro, la Lejbnica alĝebro estas ĝeneraligo de la koncepto de alĝebro de Lie, kies krampo povas esti ne malsimetria. (eo)
  • 추상대수학에서 라이프니츠 대수(Leibniz代數, 영어: Leibniz algebra) 또는 로데 대수(Loday代數, 영어: Loday algebra)는 리 대수의 개념의 “비가환” 일반화이다. 즉, 일종의 야코비 항등식을 따르지만, 이항 연산이 반대칭일 필요가 없다. 대수적 K이론에 등장한다. (ko)
  • In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module L over a commutative ring R with a bilinear product [ _ , _ ] satisfying the Leibniz identity The tensor module, T(V) , of any vector space V can be turned into a Loday algebra such that This is the free Loday algebra over V. A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. It has defining identity: (en)
  • En mathématiques, une algèbre de Leibniz (droite), ainsi nommée d'après Gottfried Wilhelm Leibniz, et parfois appelée algèbre de Loday, d'après Jean-Louis Loday, est un module L sur un anneau commutatif R muni d'un produit bilinéaire [-,-], appelé crochet, satisfaisant l'identité de Leibniz C'est l'algèbre de Loday libre sur V. (fr)
  • Inom matematiken är en (höger) Leibnizalgebra, uppkallad efter Gottfried Wilhelm von Leibniz, ibland kallad för Lodayalgebra efter , en modul L över en kommutativ ring R med en bilinjär produkt [ _ , _ ] som satisfierar Leibnizidentiteten Tensormodulen T(V) av ett godtyckligt vektorrum V kan göras till en Leibnizalgebra så att Detta är den fria Leibnizalgebran över V. (sv)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En algebro, la Lejbnica alĝebro estas ĝeneraligo de la koncepto de alĝebro de Lie, kies krampo povas esti ne malsimetria. (eo)
  • En mathématiques, une algèbre de Leibniz (droite), ainsi nommée d'après Gottfried Wilhelm Leibniz, et parfois appelée algèbre de Loday, d'après Jean-Louis Loday, est un module L sur un anneau commutatif R muni d'un produit bilinéaire [-,-], appelé crochet, satisfaisant l'identité de Leibniz En d'autres termes, la multiplication à droite par un élément c est une dérivation. Si, de plus, le crochet est alterné (i.e. [a, a] = 0) alors l'algèbre de Leibniz est une algèbre de Lie. En effet, dans ce cas [a, b] = −[b, a] et l'identité de Leibniz est équivalente à l'identité de Jacobi ([a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0). Inversement toute algèbre de Lie est une algèbre de Leibniz.Le module tensoriel T(V) sur l'espace vectoriel V devient une algèbre de Loday pour le produit C'est l'algèbre de Loday libre sur V. Les algèbres de Leibniz furent découvertes par Jean-Louis Loday en remarquant que le bord du complexe de Chevalley–Eilenberg sur le module extérieur d'une algèbre de Lie peut être remonté en un bord sur le module tensoriel, donnant ainsi un nouveau complexe. En fait, ce complexe est bien défini pour toute algèbre de Leibniz. Son homologie HL(L) est appelée . Si L est l'algèbre de Lie des matrices (infinies) sur une R-algèbre A alors l'homologie de Leibniz de L est le module tensoriel sur l'homologie de Hochschild de A. (fr)
  • In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module L over a commutative ring R with a bilinear product [ _ , _ ] satisfying the Leibniz identity In other words, right multiplication by any element c is a derivation. If in addition the bracket is alternating ([a, a] = 0) then the Leibniz algebra is a Lie algebra. Indeed, in this case [a, b] = −[b, a] and the Leibniz's identity is equivalent to Jacobi's identity ([a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0). Conversely any Lie algebra is obviously a Leibniz algebra. In this sense, Leibniz algebras can be seen as a non-commutative generalization of Lie algebras. The investigation of which theorems and properties of Lie algebras are still valid for Leibniz algebras is a recurrent theme in the literature. For instance, it has been shown that Engel's theorem still holds for Leibniz algebras and that a weaker version of Levi-Malcev theorem also holds. The tensor module, T(V) , of any vector space V can be turned into a Loday algebra such that This is the free Loday algebra over V. Leibniz algebras were discovered in 1965 by A. Bloh, who called them D-algebras. They attracted interest after Jean-Louis Loday noticed that the classical in the exterior module of a Lie algebra can be lifted to the tensor module which yields a new chain complex. In fact this complex is well-defined for any Leibniz algebra. The homology HL(L) of this chain complex is known as . If L is the Lie algebra of (infinite) matrices over an associative R-algebra A then Leibniz homologyof L is the tensor algebra over the Hochschild homology of A. A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. It has defining identity: (en)
  • 추상대수학에서 라이프니츠 대수(Leibniz代數, 영어: Leibniz algebra) 또는 로데 대수(Loday代數, 영어: Loday algebra)는 리 대수의 개념의 “비가환” 일반화이다. 즉, 일종의 야코비 항등식을 따르지만, 이항 연산이 반대칭일 필요가 없다. 대수적 K이론에 등장한다. (ko)
  • Inom matematiken är en (höger) Leibnizalgebra, uppkallad efter Gottfried Wilhelm von Leibniz, ibland kallad för Lodayalgebra efter , en modul L över en kommutativ ring R med en bilinjär produkt [ _ , _ ] som satisfierar Leibnizidentiteten I andra ord är högermultiplikation av ett godtyckligt element c en derivation. Om bracketen[förklaring behövs] dessutom är alternerande ([a, a] = 0) är Leibnizalgebran en Liealgebra. I detta fall är nämligen [a, b] = −[b, a] och Leibnizs identitet är ekvivalent med Jacobi-identiteten ([a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0). På motsvarande vis är en godtyckligt Liealgebra en Leibnizalgebra. Tensormodulen T(V) av ett godtyckligt vektorrum V kan göras till en Leibnizalgebra så att Detta är den fria Leibnizalgebran över V. Leibnizalgebror upptäcktes av 1965 som kallade dem för D-algebror. De väckte intresse efter att Jean-Louis Loday upptäckte att den klassiska i yttre modulen av en Liealgebra kan lyftas till tensormodulen vilket ger ett nytt kedjekomplex. Faktiskt är detta komplex väldefinierat för en godtycklig Leibnizalgebra. Homologin HL(L) av detta kedjekomplex är känd som . Om L är en Liealgebra av (oändliga) matriser över en associativ R-algebra A är Leibnizhomologin av L tensoralgebran över av A. (sv)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software