About: Lie–Palais theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLie%E2%80%93Palais_theorem&invfp=IFP_OFF&sas=SAME_AS_OFF

In differential geometry, the Lie–Palais theorem states that an action of a finite-dimensional Lie algebra on a smooth compact manifold can be lifted to an action of a finite-dimensional Lie group. For manifolds with boundary the action must preserve the boundary, in other words the vector fields on the boundary must be tangent to the boundary. Palais proved it as a global form of an earlier local theorem due to Sophus Lie. The example of the vector field d/dx on the open unit interval shows that the result is false for non-compact manifolds.

AttributesValues
rdf:type
rdfs:label
  • Lie–Palais theorem (en)
rdfs:comment
  • In differential geometry, the Lie–Palais theorem states that an action of a finite-dimensional Lie algebra on a smooth compact manifold can be lifted to an action of a finite-dimensional Lie group. For manifolds with boundary the action must preserve the boundary, in other words the vector fields on the boundary must be tangent to the boundary. Palais proved it as a global form of an earlier local theorem due to Sophus Lie. The example of the vector field d/dx on the open unit interval shows that the result is false for non-compact manifolds. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In differential geometry, the Lie–Palais theorem states that an action of a finite-dimensional Lie algebra on a smooth compact manifold can be lifted to an action of a finite-dimensional Lie group. For manifolds with boundary the action must preserve the boundary, in other words the vector fields on the boundary must be tangent to the boundary. Palais proved it as a global form of an earlier local theorem due to Sophus Lie. The example of the vector field d/dx on the open unit interval shows that the result is false for non-compact manifolds. Without the assumption that the Lie algebra is finite dimensional the result can be false. , p. 1048) gives the following example due to Omori: the Lie algebra is all vector fields f(x,y)∂/∂x + g(x,y)∂/∂y acting on the torus R2/Z2 such that g(x, y) = 0 for 0 ≤ x ≤ 1/2. This Lie algebra is not the Lie algebra of any group. gives an infinite dimensional generalization of the Lie–Palais theorem for Banach–Lie algebras with finite-dimensional center. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software