About: Lieb–Robinson bounds     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5qkapy4qqh

The Lieb–Robinson bound is a theoretical upper limit on the speed at which information can propagate in non-relativistic quantum systems. It demonstrates that information cannot travel instantaneously in quantum theory, even when the relativity limits of the speed of light are ignored. The existence of such a finite speed was discovered mathematically by Elliott H. Lieb and Derek W. Robinson in 1972. It turns the locality properties of physical systems into the existence of, and upper bound for this speed. The bound is now known as the Lieb–Robinson bound and the speed is known as the Lieb–Robinson velocity. This velocity is always finite but not universal, depending on the details of the system under consideration. For finite-range, e.g. nearest-neighbor, interactions, this velocity is a

AttributesValues
rdfs:label
  • Lieb–Robinson bounds (en)
rdfs:comment
  • The Lieb–Robinson bound is a theoretical upper limit on the speed at which information can propagate in non-relativistic quantum systems. It demonstrates that information cannot travel instantaneously in quantum theory, even when the relativity limits of the speed of light are ignored. The existence of such a finite speed was discovered mathematically by Elliott H. Lieb and Derek W. Robinson in 1972. It turns the locality properties of physical systems into the existence of, and upper bound for this speed. The bound is now known as the Lieb–Robinson bound and the speed is known as the Lieb–Robinson velocity. This velocity is always finite but not universal, depending on the details of the system under consideration. For finite-range, e.g. nearest-neighbor, interactions, this velocity is a (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The Lieb–Robinson bound is a theoretical upper limit on the speed at which information can propagate in non-relativistic quantum systems. It demonstrates that information cannot travel instantaneously in quantum theory, even when the relativity limits of the speed of light are ignored. The existence of such a finite speed was discovered mathematically by Elliott H. Lieb and Derek W. Robinson in 1972. It turns the locality properties of physical systems into the existence of, and upper bound for this speed. The bound is now known as the Lieb–Robinson bound and the speed is known as the Lieb–Robinson velocity. This velocity is always finite but not universal, depending on the details of the system under consideration. For finite-range, e.g. nearest-neighbor, interactions, this velocity is a constant independent of the distance travelled. In long-range interacting systems, this velocity remains finite, but it can increase with the distance travelled. In the study of quantum systems such as quantum optics, quantum information theory, atomic physics, and condensed matter physics, it is important to know that there is a finite speed with which information can propagate. The theory of relativity shows that no information, or anything else for that matter, can travel faster than the speed of light. When non-relativistic mechanics is considered, however, (Newton's equations of motion or Schrödinger's equation of quantum mechanics) it had been thought that there is then no limitation to the speed of propagation of information. This is not so for certain kinds of quantum systems of atoms arranged in a lattice, often called quantum spin systems. This is important conceptually and practically, because it means that, for short periods of time, distant parts of a system act independently. One of the practical applications of Lieb–Robinson bounds is quantum computing. Current proposals to construct quantum computers built out of atomic-like units mostly rely on the existence of this finite speed of propagation to protect against too rapid dispersal of information. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 72 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software