About: Linear ridge networks     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLinear_ridge_networks&invfp=IFP_OFF&sas=SAME_AS_OFF

Linear ridge networks are found in various places on Mars in and around craters. These features have also been called "polygonal ridge networks," "boxwork ridges", and "reticulate ridges." Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind. It is reasonable to think that on Mars impacts broke the ground with cracks since faults are often formed in impact craters on Earth. One could guess that these ridge networks were dikes, but dikes

AttributesValues
rdfs:label
  • Linear ridge networks (en)
  • 线性脊状网 (zh)
rdfs:comment
  • Linear ridge networks are found in various places on Mars in and around craters. These features have also been called "polygonal ridge networks," "boxwork ridges", and "reticulate ridges." Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind. It is reasonable to think that on Mars impacts broke the ground with cracks since faults are often formed in impact craters on Earth. One could guess that these ridge networks were dikes, but dikes (en)
  • 线性脊状网格(Linear ridge networks)在火星各处的陨坑内外都有发现,这些特征也被称为“多边形脊状网格”、“箱形脊”和“网状脊”等。脊线通常显示为格子状相交的大段直线,它们长数百米,高几十米,宽数米。据认为,撞击会在地表形成裂缝,后来这些裂缝又充当了流体通道,液体使结构胶结凝固。随着时间的推移,周围的材料被侵蚀掉,从而留下了坚硬的凸脊。有理由认为,火星上的撞击会产生裂缝,因为地球上的断层常形成于撞击坑中。可以猜测这些脊状网格是岩脉,但与这些方向变化不定的凸脊相比,岩脉的走向或多或少是相同的。由于脊线出现在有粘土的地方,这些地层可作为粘土的标志,粘土的形成需要水,这里的水可以支持这些地方过去的生命,粘土也可以保存化石或其他曾经的生命痕迹。 由于凸脊线似乎只发现于较旧的地壳中,据信,它们发生在火星地质史的早期,当时有更多更大的小行星撞击该行星,这些早期撞击可能导致早期地壳中布满了相互连接的通道 。这些网格在包括阿拉伯高地(阿拉伯区)、子午线高原北部、太阳高原、诺亚高地(挪亚区)、亚特兰提斯混沌和内彭西斯桌山群(第勒尼安海区)等火星许多区域都有发现。 在梅杜莎槽沟层东部发现了一处稍有不同的山脊地层;这些深色的凸脊有50米高并被侵蚀成黑色的巨石。有人认为,在被熔岩流包围的梅杜莎槽沟地层中存在熔岩填塞的裂缝。 (zh)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_020230dikes.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_043410_1980ridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Ridgecomplex22919.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/45992_1780blocks.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/45992_1780curvedridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/45992_1780ridgeswide.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/45992_1780roughblocks.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_034887_1490ridgesphaethontis.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_034887_1490ridgesphaethontisclose.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036443_1495ridgesphaethontisbottom.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036443_1495ridgesphaethontistop.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036893_1765ridgesnepenthestop.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_045992_1780ridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/48236_2105ridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/48236_2105ridges2.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/48236_2105ridges3.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/48236_2105ridgesmesa.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036869_2105ridgesbottom.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036869_2105ridgesclose.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036869_2105ridgeswide.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_043845_2130ridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_043845_2130ridgesclose.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_043845_2130ridgeswide.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_048236_2105ridgesclosecolor.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_048236_2105ridgeswide.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Huo_Hsing_Vallis_Ridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Huo_Hsing_Vallis_in_Syrtis_Major.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036316_2015straightridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/26552sharpridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/36745_1905lridgesshort.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/36745_1905ridgesx.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036745_1905ridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_036745_1905top.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/47054_2160largeridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/47054_2160largeridgeschanging.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/47054_2160smallridges.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/ESP_047054_2160ridges.jpg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Linear ridge networks are found in various places on Mars in and around craters. These features have also been called "polygonal ridge networks," "boxwork ridges", and "reticulate ridges." Ridges often appear as mostly straight segments that intersect in a lattice-like manner. They are hundreds of meters long, tens of meters high, and several meters wide. It is thought that impacts created fractures in the surface, these fractures later acted as channels for fluids. Fluids cemented the structures. With the passage of time, surrounding material was eroded away, thereby leaving hard ridges behind. It is reasonable to think that on Mars impacts broke the ground with cracks since faults are often formed in impact craters on Earth. One could guess that these ridge networks were dikes, but dikes would go more or less in the same direction, as compared to these ridges that have a large variety of orientations. Since the ridges occur in locations with clay, these formations could serve as a marker for clay which requires water for its formation. Water here could have supported past life in these locations. Clay may also preserve fossils or other traces of past life. These ridges could be formed by large impacts that produced fractures, faults, or dikes made up of melted rock and/or crushed rock (breccia). One formation mechanism proposed by Quinn and Ehlmann in 2017 was that sediment was deposited and eventually the sediment underwent diagenesis which caused a loss of volume and fractures. After erosion exposed the fractures, they were filled with minerals possibly by acid-sulfate fluids. More erosion removed softer materials and left the more resistant ridges behind. If the impact-caused dike is made of purely melted rock from the heat of the impact, it is called a pseudotachylite . Also, hydrothermalism may have been involved due to the heat generated during impacts. Strong evidence for hydrothermalism was reported by a team of researchers studying Auki Crater. This crater contains ridges that may have been produced after fractures formed with an impact. Using instruments on the Mars Reconnaissance Orbiter they found the minerals smectite, silica, zeolite, serpentine, carbonate, and chlorite that are common in impact-induced hydrothermal systems on Earth. Other evidence of post-impact hydrothermal systems on Mars from other scientists who studied other Martian craters. Because ridges seem to be found in older crust only, it is believed that they occurred early in the history of Mars when there were more and larger asteroids striking the planet.These early impacts may have caused the early crust to be full of interconnected channels. These networks have been found many regions of Mars including in Arabia Terra (Arabia quadrangle), northern Meridiani Planum, Solis Planum, Noachis Terra (Noachis quadrangle), Atlantis Chaos, and Nepenthes Mensa (Mare Tyrrhenum quadrangle). A somewhat different ridge formation has been discovered in the Eastern Medusae Fossae Formation; these dark ridges can be 50 meters in height and erode into dark boulders. It has been suggested that there are from lava filling fractures in the Medusae Fossae Formation which is surrounded by lava flows. (en)
  • 线性脊状网格(Linear ridge networks)在火星各处的陨坑内外都有发现,这些特征也被称为“多边形脊状网格”、“箱形脊”和“网状脊”等。脊线通常显示为格子状相交的大段直线,它们长数百米,高几十米,宽数米。据认为,撞击会在地表形成裂缝,后来这些裂缝又充当了流体通道,液体使结构胶结凝固。随着时间的推移,周围的材料被侵蚀掉,从而留下了坚硬的凸脊。有理由认为,火星上的撞击会产生裂缝,因为地球上的断层常形成于撞击坑中。可以猜测这些脊状网格是岩脉,但与这些方向变化不定的凸脊相比,岩脉的走向或多或少是相同的。由于脊线出现在有粘土的地方,这些地层可作为粘土的标志,粘土的形成需要水,这里的水可以支持这些地方过去的生命,粘土也可以保存化石或其他曾经的生命痕迹。 这些山脊线可能产生于大型撞击时,由熔融岩石和/或碎石(角砾岩)构成的裂缝、断层或岩脉。2017年,奎因(Quinn)和埃尔曼(Ehlmann)提出了一种沉积物堆积的形成机制,沉积物最终经历成岩作用,导致体积缩小和断裂,在侵蚀暴露出裂缝后,裂缝中灌满了可能为酸性硫酸盐流体的矿物。更多的侵蚀去除了较松软的地层,留下了更耐侵蚀的凸脊[。如果撞击造成的岩脉是由撞击热量产生的纯熔岩构成,则它也被称为“假玄武玻璃”(pseudotachylite)。此外,由于撞击中产生的热量,可能还涉及到热液作用。一组研究奥基陨击坑的科研人员报告了热液作的有力证据,该陨石坑中的脊线可能是在撞击产生的裂缝之后形成的。他们通过火星勘测轨道飞行器上的仪器,发现了蒙脱石、二氧化硅、沸石、蛇纹石、碳酸盐以及地球上撞击诱发的热液系统中常见的绿泥石 。其他研究火星陨石坑的科学家也提供了火星撞击后热液系统的另外证据 。 由于凸脊线似乎只发现于较旧的地壳中,据信,它们发生在火星地质史的早期,当时有更多更大的小行星撞击该行星,这些早期撞击可能导致早期地壳中布满了相互连接的通道 。这些网格在包括阿拉伯高地(阿拉伯区)、子午线高原北部、太阳高原、诺亚高地(挪亚区)、亚特兰提斯混沌和内彭西斯桌山群(第勒尼安海区)等火星许多区域都有发现。 在梅杜莎槽沟层东部发现了一处稍有不同的山脊地层;这些深色的凸脊有50米高并被侵蚀成黑色的巨石。有人认为,在被熔岩流包围的梅杜莎槽沟地层中存在熔岩填塞的裂缝。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software