About: Lipid microdomain     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLipid_microdomain&invfp=IFP_OFF&sas=SAME_AS_OFF

Lipid microdomains are formed when lipids undergo lateral phase separations yielding stable coexisting lamellar domains. These phase separations can be induced by changes in temperature, pressure, ionic strength or by the addition of divalent cations or proteins. The question of whether such lipid microdomains observed in model lipid systems also exist in biomembranes had motivated considerable research efforts. Lipid domains are not readily isolated and examined as unique species, in contrast to the examples of lateral heterogeneity.One can disrupt the membrane and demonstrate a heterogeneous range of composition in the population of the resulting vesicles or fragments. Electron microscopy can also be used to demonstrate lateral inhomogeneities in biomembranes.

AttributesValues
rdfs:label
  • Lipid microdomain (en)
rdfs:comment
  • Lipid microdomains are formed when lipids undergo lateral phase separations yielding stable coexisting lamellar domains. These phase separations can be induced by changes in temperature, pressure, ionic strength or by the addition of divalent cations or proteins. The question of whether such lipid microdomains observed in model lipid systems also exist in biomembranes had motivated considerable research efforts. Lipid domains are not readily isolated and examined as unique species, in contrast to the examples of lateral heterogeneity.One can disrupt the membrane and demonstrate a heterogeneous range of composition in the population of the resulting vesicles or fragments. Electron microscopy can also be used to demonstrate lateral inhomogeneities in biomembranes. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Lipid microdomains are formed when lipids undergo lateral phase separations yielding stable coexisting lamellar domains. These phase separations can be induced by changes in temperature, pressure, ionic strength or by the addition of divalent cations or proteins. The question of whether such lipid microdomains observed in model lipid systems also exist in biomembranes had motivated considerable research efforts. Lipid domains are not readily isolated and examined as unique species, in contrast to the examples of lateral heterogeneity.One can disrupt the membrane and demonstrate a heterogeneous range of composition in the population of the resulting vesicles or fragments. Electron microscopy can also be used to demonstrate lateral inhomogeneities in biomembranes. Often, lateral heterogeneity has been inferred from biophysical techniques where the observed signal indicates multiple populations rather than the expected homogeneous population. An example of this is the measurement of the diffusion coefficient of a fluorescent lipid analogue in soybean protoplasts. Membrane microheterogeneity is sometimes inferred from the behavior of enzymes, where the enzymatic activity does not appear to be correlated with the average lipid physical state exhibited by the bulk of the membrane. Often, the methods suggest regions with different lipid fluidity, as would be expected of coexisting gel and liquid crystalline phases within the biomembrane. This is also the conclusion of a series of studies where differential effects of perturbation caused by cis and trans fatty acids are interpreted in terms of preferential partitioning of the two liquid crystalline and gel-like domains. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software