About: Log-structured merge-tree     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDatabaseIndexTechniques, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLog-structured_merge-tree&invfp=IFP_OFF&sas=SAME_AS_OFF

In computer science, the log-structured merge-tree (also known as LSM tree, or LSMT) is a data structure with performance characteristics that make it attractive for providing indexed access to files with high insert volume, such as transactional log data. LSM trees, like other search trees, maintain key-value pairs. LSM trees maintain data in two or more separate structures, each of which is optimized for its respective underlying storage medium; data is synchronized between the two structures efficiently, in batches.

AttributesValues
rdf:type
rdfs:label
  • Log-structured merge-tree (en)
  • LSM-дерево (ru)
rdfs:comment
  • LSM-дерево (от Log-structured merge-tree — журнально-структурированное дерево со слиянием) — используемая во многих СУБД структура данных, предоставляющая быстрый доступ по индексу в условиях частых запросов на (например, при хранении журналов транзакций). LSM-деревья, как и другие деревья, хранят пары «ключ — значение». LSM-дерево поддерживает две или более различные структуры, каждая из которых оптимизирована под устройство, в котором она будет храниться. Синхронизация между этими структурами происходит блоками. (ru)
  • In computer science, the log-structured merge-tree (also known as LSM tree, or LSMT) is a data structure with performance characteristics that make it attractive for providing indexed access to files with high insert volume, such as transactional log data. LSM trees, like other search trees, maintain key-value pairs. LSM trees maintain data in two or more separate structures, each of which is optimized for its respective underlying storage medium; data is synchronized between the two structures efficiently, in batches. (en)
name
  • Log-structured merge-tree (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/LSM_Tree.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
type
  • Hybrid (en)
has abstract
  • In computer science, the log-structured merge-tree (also known as LSM tree, or LSMT) is a data structure with performance characteristics that make it attractive for providing indexed access to files with high insert volume, such as transactional log data. LSM trees, like other search trees, maintain key-value pairs. LSM trees maintain data in two or more separate structures, each of which is optimized for its respective underlying storage medium; data is synchronized between the two structures efficiently, in batches. One simple version of the LSM tree is a two-level LSM tree. As described by Patrick O'Neil, a two-level LSM tree comprises two tree-like structures, called C0 and C1. C0 is smaller and entirely resident in memory, whereas C1 is resident on disk. New records are inserted into the memory-resident C0 component. If the insertion causes the C0 component to exceed a certain size threshold, a contiguous segment of entries is removed from C0 and merged into C1 on disk. The performance characteristics of LSM trees stem from the fact that each component is tuned to the characteristics of its underlying storage medium, and that data is efficiently migrated across media in rolling batches, using an algorithm reminiscent of merge sort. Most LSM trees used in practice employ multiple levels. Level 0 is kept in main memory, and might be represented using a tree. The on-disk data is organized into sorted runs of data. Each run contains data sorted by the index key. A run can be represented on disk as a single file, or alternatively as a collection of files with non-overlapping key ranges. To perform a query on a particular key to get its associated value, one must search in the Level 0 tree and also each run.The Stepped-Merge version of the LSM tree is a variant of the LSM tree that supports multiple levels with multiple tree structures at each level. A particular key may appear in several runs, and what that means for a query depends on the application. Some applications simply want the newest key-value pair with a given key. Some applications must combine the values in some way to get the proper aggregate value to return. For example, in Apache Cassandra, each value represents a row in a database, and different versions of the row may have different sets of columns. In order to keep down the cost of queries, the system must avoid a situation where there are too many runs. Extensions to the 'leveled' method to incorporate B+ tree structures have been suggested, for example bLSM and Diff-Index. LSM-tree was originally designed for write-intensive workloads. As increasingly more read and write workloads co-exist under an LSM-tree storage structure, read data accesses can experience high latency and low throughput due to frequent invalidations of cached data in buffer caches by LSM-tree compaction operations. To re-enable effective buffer caching for fast data accesses, a Log-Structured buffered-Merged tree (LSbM-tree) is proposed and implemented. LSM trees are used in data stores such as Apache AsterixDB, Bigtable, HBase, LevelDB, Apache Accumulo, SQLite4, Tarantool, RocksDB, WiredTiger, Apache Cassandra, InfluxDB and ScyllaDB. (en)
  • LSM-дерево (от Log-structured merge-tree — журнально-структурированное дерево со слиянием) — используемая во многих СУБД структура данных, предоставляющая быстрый доступ по индексу в условиях частых запросов на (например, при хранении журналов транзакций). LSM-деревья, как и другие деревья, хранят пары «ключ — значение». LSM-дерево поддерживает две или более различные структуры, каждая из которых оптимизирована под устройство, в котором она будет храниться. Синхронизация между этими структурами происходит блоками. (ru)
delete min avg
  • O (en)
delete min worst
  • O (en)
find min avg
  • O (en)
find min worst
  • O (en)
insert avg
  • O (en)
insert worst
  • O (en)
invented by
  • Patrick O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth O'Neil (en)
invented year
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is differentFrom of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software