About: Low-rank matrix approximations     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FLow-rank_matrix_approximations&invfp=IFP_OFF&sas=SAME_AS_OFF

Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. Kernel methods (for instance, support vector machines or Gaussian processes) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane. In the kernel method the data is represented in a kernel matrix (or, Gram matrix). Many algorithms can solve machine learning problems using the kernel matrix. The main problem of kernel method is its high computational cost associated with kernel matrices. The cost is at least quadratic in the number of training data points, but most kernel methods include computation of matrix inversion or eigenvalue decomposition and the cost becomes cubic in the number of training dat

AttributesValues
rdfs:label
  • Low-rank matrix approximations (en)
rdfs:comment
  • Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. Kernel methods (for instance, support vector machines or Gaussian processes) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane. In the kernel method the data is represented in a kernel matrix (or, Gram matrix). Many algorithms can solve machine learning problems using the kernel matrix. The main problem of kernel method is its high computational cost associated with kernel matrices. The cost is at least quadratic in the number of training data points, but most kernel methods include computation of matrix inversion or eigenvalue decomposition and the cost becomes cubic in the number of training dat (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Low-rank matrix approximations are essential tools in the application of kernel methods to large-scale learning problems. Kernel methods (for instance, support vector machines or Gaussian processes) project data points into a high-dimensional or infinite-dimensional feature space and find the optimal splitting hyperplane. In the kernel method the data is represented in a kernel matrix (or, Gram matrix). Many algorithms can solve machine learning problems using the kernel matrix. The main problem of kernel method is its high computational cost associated with kernel matrices. The cost is at least quadratic in the number of training data points, but most kernel methods include computation of matrix inversion or eigenvalue decomposition and the cost becomes cubic in the number of training data. Large training sets cause large storage and computational costs. Despite low rank decomposition methods (Cholesky decomposition) reduce this cost, they continue to require computing the kernel matrix. One of the approaches to deal with this problem is low-rank matrix approximations. The most popular examples of them are Nyström method and the random features. Both of them have been successfully applied to efficient kernel learning. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software