In mathematics, a Markov odometer is a certain type of topological dynamical system. It plays a fundamental role in ergodic theory and especially in orbit theory of dynamical systems, since a theorem of H. Dye asserts that every ergodic nonsingular transformation is orbit-equivalent to a Markov odometer. The general form, which is called "Markov odometer", can be constructed through Bratteli–Vershik diagram to define Bratteli–Vershik compactum space together with a corresponding transformation.
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
foaf:depiction | |
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
thumbnail | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of |
|
is Wikipage redirect of | |
is Wikipage disambiguates of | |
is foaf:primaryTopic of |